Why 1986 El Niño and 2005 La Niña evolved different from a typical El Niño and La Niña

Springer Science and Business Media LLC - Tập 51 - Trang 4309-4327 - 2017
Mingcheng Chen1,2, Tim Li1,2
1Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environmental Change (ILCEC), Collaborative Innovation Center On Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China
2IPRC/AORC and Department of Atmospheric Sciences, University of Hawaii at Manoa, Honolulu, USA

Tóm tắt

1986 El Niño (EN) and 2005 La Niña (LN) experienced distinctive evolution features compared to the typical EN and LN events. The 1986 EN persisted for more than 2 years, whereas the 2005 LN transitioned into a warm episode in the following winter. The physical mechanisms that caused the distinctive evolution features are investigated through an oceanic mixed-layer heat budget (MLHB) analysis. For both cases, major differences with typical EN and LN lie in wind induced anomalous zonal advection and thermocline feedback terms. An anomalous cyclone appeared over the western North Pacific (WNPC) in late 1986, in contract to an anomalous anticyclone (WNPAC) during the mature winter of the typical EN. The eastward propagation of anomalous convective heating from tropical Indian Ocean in late 1986 holds a key for generating the anomalous WNPC in the mature winter of 1986/87 EN. The equatorial westerly anomaly south of the WNPC triggered downwelling Kelvin waves, prolonging the positive SSTA throughout 1987. The negative SSTA center of the 2005 LN shifted eastward by at least 20° in longitude compared to the typical LN. As a result, an anomalous WNPC, with pronounced westerly anomalies at the equator, developed in the 2005 LN mature phase. This led to a rapid decay of the 2005 LN, and by the following boreal summer a positive SSTA formed. The season-dependent air-sea feedback further strengthens the warming in northern fall, leading to a transition from LN to EN in the succeed winter.

Tài liệu tham khảo

Abellan E, McGregor S, England M (2017) Analysis of the southward wind shift of ENSO in CMIP5 Models. J Clim 30:2415–2435 Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231 Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteor Soc 139:1132–1161 Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712 Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172 Boulanger JP, Menkes C (2001) The TRIDENT Pacific model. Part II: the thermos-dynamical model and the role of long equatorial wave reflection during the 1993–1998 TOPEX/POSEIDON period. Clim Dyn 17:175–186 Boulanger JP, Cravatte S, Menkes C (2003) Reflected and locally wind-forced interannual equatorial Kelvin waves in the western Pacific Ocean. J Geophys Res 108:3311 Cane MA, Zebiak SE (1985) A theory for El Niño and the Southern Oscillation. Science 228:1084–1087 Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017 Chen JM, Li T, Shih CF (2007) Fall persistence barrier of sea surface temperature in the South China Sea associated with ENSO. J Clim 20:158–172 Chen L, Li T, Yu Y (2015) Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J Clim 28:3250–3274 Chen M, Li T, Shen X, Wu B (2016) Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J Clim 29:2201–2220 Chen L, Li T, Wang B, Wang L (2017) Formation mechanism for 2015/16 super El Niño. Nat Sci Rep 7:2975 Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteor Soc 137:553–597 Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn 40:2825–2847 Harrison DE, Vecchi GA (1999) On the termination of El Niño. Geophys Res Lett 26:1593–1596 Hirst AC (1986) Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J Atmos Sci 43:606–630 Hirst AC (1988) Slow instabilities in tropical ocean basin-global atmosphere models. J Atmos Sci 45:830–852 Hong C-C, Li T, Lin H, Kug J-S (2008) Asymmetry of the Indian Ocean dipole. Part I: observational analysis. J Clim 21:4834–4848 Hong C-C, Li T, Lin H, Chen Y-C (2010) Asymmetry of the Indian Ocean basin-wide SST anomalies: roles of ENSO and IOD. J Clim 23:3563–3576 Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual mode. J Atmos Sci 54:811–829 Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470 Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteor Soc 83:1631–1643 Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29:2125. doi:10.1029/2002GL015924 Larkin NK, Harrison DE (2002) ENSO warm (El Niño) and cold (La Niña) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Clim 15:1118–1140 Latif M, Anderson D, Barnett T et al (1998) A review of the predictability and prediction of ENSO. J Geophys Res 103:14375–14393 Li T (1997) Phase transition of the El Niño–Southern Oscillation: a stationary SST mode. J Atmos Sci 54:2872–2887 Li T, Zhang Y-S, Chang C-P, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:2110. doi:10.1029/2002GL015789 Li T, Wang B, Wang L (2016) Comments on “Combination mode dynamics of the anomalous Northwest Pacific anticyclone”. J Clim 29:4685–4693 Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteor Soc 77:1275–1277 McGregor S, Timmermann A, Schneider N, Stuecker M, England M (2012) The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J Clim 25:5566–5586 McGregor S, Ramesh N, Spence P, England M, McPhaden M, Santoso A (2013) Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys Res Lett 40:749–754 Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23:5826–5843 Philander SGH (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, pp 293 Philander SGH, Yamagata T, Pacanowski RC (1984) Unstable air–sea interactions in the tropics. J Atmos Sci 41:604–613 Picaut J, Masia F, Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666 Picaut J et al (2002) Mechanisms of the 1997–98 El Niño–La Niña as inferred from space-based observations. J Geophys Res 107:5-1–5-18 Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296 Stuecker M, Jin F-F, Timmermann A, McGregor S (2015) Combination mode dynamics of the anomalous Northwest Pacific anticyclone. J Clim 28:1093–1111 Stuecker M, Jin F-F, Timmermann A, McGregor S (2016) Reply to “comments on ‘combination mode dynamics of the anomalous Northwest Pacific anticyclone’”. J Clim 29:4695–4706 Su J, Zhang R, Li T, Rong X, Kug J-S, Hong C-C (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim 23:605–617 Su J, Li T, Zhang R (2014) The initiation and developing mechanisms of central Pacific El Niños. J Clim 27:4473–4485 Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287 Trenberth KE, Branstator GW, Karoly D et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324 Wallace JM, Rasmusson EM, Mitchcell TP et al (1998) On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J Geophys Res 103:14241–14259 Wang C, Picaut J (2004) Understanding ENSO physics—a review. Earth’s climate: the ocean–atmosphere interaction. In: Wang C, Xie SP, Carton JA (eds) AGU. Geophys Monogr Ser 147:21–48 Wang C, Weisberg RH (2000) The 1997–98 El Niño evolution relative to previous El Niño events. J Clim 13:488–501 Wang C, Weisberg RH, Virmani JI (1999) Western Pacific interannual variability associated with the El Niño–Southern Oscillation. J Geophys Res 104:5131–5149 Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536 Wang B, Wu R, Li T (2003) Atmosphere–warm ocean interaction and its impacts on Asian–Australian Monsoon variation. J Clim 16:1195–1211 Wang C, Deser C, Yu JY, DiNezio P, Clement A (2016) El Niño–Southern Oscillation (ENSO): a review. Coral reefs of the Eastern Pacific. In: Glymn P, Manzello D, Enochs I (eds) Springer, 85–106 Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys Res Lett 24:779–782 Wu B, Li T, Zhou T (2010) Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J Clim 23:4807–4822 Wu B, Zhou T, Li T (2012) Two distinct modes of tropical Indian Ocean precipitation in boreal winter and their impacts on equatorial western Pacific. J Clim 25:921–938 Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution Tech. Rep. OA-2008-1