On The Stiffness Prediction of GFRP Pipes Subjected to Transverse Loading

KSCE Journal of Civil Engineering - Tập 22 - Trang 4564-4572 - 2018
Roham Rafiee1, Mohammad Reza Habibagahi1
1Composites Research Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

Tóm tắt

The main objective of this study is to predict the stiffness of GFRP pipes subjected to compressive transverse loading. An experimental study is performed to measure the stiffness of a composite pipe with a core layer of sand/resin composites. Then, a simple analytical modeling constructed on the basis of solid mechanics is used to estimate the stiffness of the investigated pipe as the back-of-envelope technique widely used by industrial sectors. The simulation of stiffness test is conducted using finite element modeling wherein both large deformation and inelastic behavior of material is taken into account as the sources of nonlinearity. The results reveal that a very good estimation with high level of accuracy can be reached by proper selection of the element and performing nonlinear analysis.

Tài liệu tham khảo

ASTM D 3171–06 (2006). Standard test methods for constituent contents of composite materials, American Society for Testing and Materials.

ASTM D3517-06 (2006). Standard Specification for “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pressure Pipe, American Society for Testing and Materials.

AWWA manual M45 (2005). Fiberglass pipe design (second edition), Denver, American Water Works Association.

Bakaiyan, H., Hosseini, H., and Ameri, E. (2009). “Analysis of multilayered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations.” Composite Structures, Vol. 88, No. 4, pp. 532–541, DOI: 10.1016/j.compstruct.2008.05.017.

Curtis, J., Hinton, M. J., Li, S., Reid, S. R., and Soden, P. D. (2000). “Damage, deformation and residual burst strength of filamentwound composite tubes subjected to impact or quasi-static indentation.” Composites: Part B, Vol. 31, No. 5, pp. 419–433, DOI: 10.1016/S1359-8368(00)00014-7.

Gibson, R. F. (2007). Principles of composite material mechanics (2nd ed.), CRC Press.

Gning, P. B., Tarfaoui, M., Collombet, F., Riou, L., and Davies, P. (2005). “Damage development in thick composite tubes under impact loading and influence on implosion pressure: Experimental observations.” Composites: Part B, Vol. 36, No. 4, pp. 306–318, DOI: 10.1016/j.compositesb.2004.11.004.

Guedes, R. M. (2006). “Stress analysis of transverse loading for laminated cylindrical composite pipes: An approximated 2-D elasticity solution.” Composites Science and Technology, Vol. 66, Nos. 3–4, pp. 427–434, DOI: 10.1016/j.compscitech.2005.07.018.

Guedes, R. M. (2009). “Stress-strain analysis of a cylindrical pipe subjected to a transverse load and large deflection.” Composites Structures, Vol. 88, No. 2, pp. 188–194, DOI: 10.1016/j.compstruct.2008.03.031.

Meijer, G. and Ellyin, F. (2009). “A failure envelope for ±60º filament wound glass fiber reinforced epoxy tubular.” Composites Part A, Vol. 39, No. 3, pp. 555–564, DOI: 10.1016/j.compositesa.2007.11.002.

Melo, J. D. D., Neto, F. L., Barros, G. A., and Masquita, F. N. A. (2010). “Mechanical behavior of GRP pressure pipes with addition of quarts sand filler.” Journal of Composite Materials, Vol. 45, No. 6, pp. 717–726, DOI: 10.1177/0021998310385593.

Mertiny, P. (2012). “Leakage failure in fibre-reinforced polymer composite tubular vessels at elevated temperature.” Polymer Testing, Vol. 31, No. 1, pp. 25–30, DOI: 10.1016/j.polymertesting.2011.09.003.

Mital, S. K. (1996). Micromechanics for particulate reinforced composites, NASA technical memorandum 107276.

Rafiee, R. and Amini, A. (2015). “Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes.” Computational Materials Science, Vol. 96, Part B, pp. 579–588, DOI: 10.1016/j.commatsci.2014.03.036.

Rafiee, R. and Elasmi, F. (2017). “Theoretical modeling of fatigue phenomenon in composites pipes.” Composite Structures, Vol. 161, pp. 256–263, DOI: 10.1016/j.compstruct.2016.11.054.

Rafiee, R. and Mazhari, B. (2015). “Modeling creep in polymeric composites: Developing a general integrated procedure.” International Journal of Mechanical Science, Vol. 99, pp. 112–120, DOI: 10.1016/j.ijmecsci.2015.05.011.

Rafiee, R. and Mazhari, B. (2016). “Evaluating the longterm performance of Glass Fiber Reinforced Plastic pipes subjected to internal pressure.” Construction and Building Materials, Vol. 122, pp. 694–701, DOI: 10.1016/j.conbuildmat.2016.06.103.

Rafiee, R., Fakoor, M., and Hesamsadat, H. (2015). “The influence of production inconsistencies on the functional failure of GRP pipes.” Steel and Composite Structures, Vol. 19, No. 6, pp. 1369–1379, DOI: 10.12989/scs.2015.19.6.1369.

Rafiee, R., Reshadi, F., and Eidi, S. (2015). “Stochastic analysis of functional failure pressure in glass fiber reinforced polyester pipes.” Materials and Design, Vol. 67, pp. 422–427, DOI: 10.1016/j.matdes.2014.12.003.

Samanci, A., Tarakcioglu, N., and Akdemir, A. (2011). “Fatigue failure analysis of surface-cracked (±45º)3 filament-wound GRP pipes under internal pressure.” Journal of Composite Materials, Vol. 46, No. 9, pp. 1041–1050, DOI: 10.1177/0021998311414945.

Sari, M., Karakuzu, R., Deniz, M. E., and Icten, B. M. (2011). “Residual failure pressures and fatigue life of filament-wound composite pipes subjected to lateral impact.” Journal of Composite Materials, Vol. 46, No. 15, pp. 1787–1794, DOI: 10.1177/0021998311425717.

Tarakcioglu, N., Samanci, A., Arikan, H., and Akdemir, A. (2007). “The fatigue behavior of (±55°)3 filament wound GRP pipes with a surface crack under internal pressure.” Composite Structures, Vol. 80, No. 2, pp. 207–211, DOI: 10.1016/j.compstruct.2006.05.015.

Tarfaoui, M., Gning, P. B., Davies, P., and Collombet, F. (2007). “Scale and size effects on dynamic response and damage of glass/epoxy tubular structures.” Journal of Composite Materials, Vol. 41, pp. 547–558, DOI: 10.1177/0021998306065287.

Tsai, S. W., Hoa, S. V., and Gay, D. (2003). Composite materials, design and applications, CRC Press.

Tse, P. C., Reid, S. R., and Ng, S. P. (2001). “Spring constants of filament-wound composite circular rings. Proceedings of the Institution of Mechanical Engineers.” Part C: Journal of Mechanical Engineering Science, Vol. 215, No. 2, pp. 211–226, DOI: 10.1243/0954406011520634.

Watkins, R. K. and Anderson, L. R. (2000). Structural mechanics of buried pipes, CRC Press LLC.

Xia, M., Takayanagi, H., and Kemmochi, K. (2001a). “Analysis of multi-layered filament wound composite pipes under internal pressure.” Composite Structures, Vol. 53, pp. 483–491, DOI: 10.1016/S0263-8223(01)00061-7.

Xia, M., Takayanagi, H., and Kemmochi, K. (2001b). “Analysis of filament-wound fiber reinforced sandwich pipe under combined internal pressure and thermomechanical loading.” Composite Structure, Vol. 51, pp. 273–83, DOI: 10.1016/S0263-8223(00)00137-9.