Simulation of functional failure in GRP mortar pipes

Composite Structures - Tập 113 - Trang 155-163 - 2014
Roham Rafiee1, Farshid Reshadi1
1Composites Research Laboratory, Faculty of New Sciences and Technologies, University of Tehran, End of the North Karegar St., Tehran 1439955941, Iran

Tài liệu tham khảo

ASTM D3517. Standard specification for fibreglass (glass-fibre-reinforced thermosetting-resin) pressure pipe. ISO 10639. Plastics piping systems for pressure and non-pressure water supply – glass-reinforced thermosetting plastics (GRP) systems based on unsaturated polyester (UP) resin. Huysmans, 1998, Structural analysis of GRP pipe couplers by using a fracture mechanical approach, Compos B Eng, 29, 477, 10.1016/S1359-8368(97)00035-8 Mistry, 1992, Theoretical investigation into the effect of the winding angle of the fibres on the strength of filament wound GRP pipes subjected to combined external pressure and axial compression, Compos Struct, 20, 83, 10.1016/0263-8223(92)90064-J Spencer, 1978, Effect of winding angle on the failure of filament wound pipe, Composites, 9, 263, 10.1016/0010-4361(78)90180-5 Hull, 1978, Failure of glass/polyester filament wound pipe, Composites, 9, 17, 10.1016/0010-4361(78)90513-X Xia, 2001, Analysis of multi-layered filament-wound composite pipes under internal pressure, Compos Struct, 53, 483, 10.1016/S0263-8223(01)00061-7 Xia, 2001, Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading, Compos Struct, 51, 273, 10.1016/S0263-8223(00)00137-9 Xia, 2001, Analysis of transverse loading for laminated cylindrical pipes, Compos Struct, 53, 279, 10.1016/S0263-8223(01)00011-3 Xia, 2002, Bending behavior of filament-wound fiber-reinforced sandwich pipes, Compos Struct, 56, 201, 10.1016/S0263-8223(01)00181-7 Al-Khalil, 1995, The effects of radial stresses on the strength of thin-walled filament wound GRP composite pressure cylinders, Int J Mech Sci, 38, 97, 10.1016/0020-7403(95)00027-U Ellyin, 2001, Biaxial fatigue behaviour of a multidirectional filament-wound glass-fiber/epoxy pipe, Compos Sci Technol, 61, 491, 10.1016/S0266-3538(00)00215-3 Martens, 2000, Biaxial monotonic behavior of a multidirectional glass fiber epoxy pipe, Compos A Appl Sci Manuf, 31, 1001, 10.1016/S1359-835X(00)00041-5 Martins, 2013, The effect of stress ratio on the fracture morphology of filament wound composite tubes, Mater Des, 49, 471, 10.1016/j.matdes.2013.01.026 Martins, 2012, Structural and functional failure pressure of filament wound composite tubes, Mater Des, 36, 779, 10.1016/j.matdes.2011.11.029 Jin, 2013, Structural analysis and optimum design of GRP pipes based on properties of materials, Constr Build Mater, 38, 316, 10.1016/j.conbuildmat.2012.07.115 Rafiee, 2013, Apparent hoop tensile strength prediction of glass fiber-reinforced polyester pipes, J Compos Mater, 47, 1377, 10.1177/0021998312447209 Ribeiro, 2003, Thermal expansion of epoxy and polyester polymer mortars—plain mortars and fibre-reinforced mortars, Polym Test, 22, 849, 10.1016/S0142-9418(03)00021-7 Del Vecchio, 2014, Elasto-viscoplastic behaviour of polyester polymer mortars under monotonic and cyclic compression, Polym Test, 35, 62, 10.1016/j.polymertesting.2014.02.007 ASTM D 3171-11. Standard test methods for constituent content of composite materials. Philadelphia (PA): American Society for Testing and Materials; 2006. Rafiee, 2014, Modeling and experimental evaluation of functional failure pressures in GRP pipe, Comp Mater Sci, 10.1016/j.commatsci.2014.03.036 Hashin Z. Fatigue failure criteria for unidirectional fiber composites. DTIC document; 1980. Rafiee, 2013, Experimental and theoretical investigations on the failure of filament wound GRP pipes, Compos B Eng, 45, 257, 10.1016/j.compositesb.2012.04.009 Gay, 2002 Chamis CC. Mechanics of composite materials-past, present and future; 1989.