Modular representations of finite groups and Lie theory

Raphaël Rouquier1
1Department of Mathematics, UCLA, Box 951555 Los Angeles, CA 90095-1555, USA

Tài liệu tham khảo

Alperin, 1987, Weights for finite groups, 369

Andersen, 2009, The classification of 2-compact groups, J. Am. Math. Soc., 22, 387, 10.1090/S0894-0347-08-00623-1

Arkhipov, 2004, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Am. Math. Soc., 17, 595, 10.1090/S0894-0347-04-00454-0

Aschbacher, 2000

Benson, 2007, Blocks inequivalent to their Frobenius twists, J. Algebra, 315, 588, 10.1016/j.jalgebra.2007.03.044

Ben-Zvi

Bonnafé

Bonnafé, 2017, Derived categories and Deligne-Lusztig varieties II, Ann. Math., 185, 609, 10.4007/annals.2017.185.2.5

Bonnafé, 2020, Translation by the full twist and Deligne-Lusztig varieties, J. Algebra, 558, 129, 10.1016/j.jalgebra.2019.10.010

Bonnafé, 2011, Computational proof of the Mackey formula for q>2, J. Algebra, 327, 506, 10.1016/j.jalgebra.2010.10.030

Bonnafé, 2003, Catégories dérivées et variétés de Deligne-Lusztig, Publ. Math. Inst. Hautes Études Sci., 97, 1, 10.1007/s10240-003-0013-3

Bonnafé, 2006, Coxeter orbits and modular representations, Nagoya Math. J., 183, 1, 10.1017/S0027763000009259

Bonnafé

Bouc, 2017, On a question of Rickard on tensor products of stably equivalent algebras, Exp. Math., 26, 31, 10.1080/10586458.2015.1107869

Brieskorn, 1971, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math., 12, 57, 10.1007/BF01389827

Broto, 2012, Equivalences between fusion systems of finite groups of Lie type, J. Am. Math. Soc., 25, 1, 10.1090/S0894-0347-2011-00713-3

Broué, 1990, Isométries parfaites, types de blocs, catégories dérivées, Astérisque, 181–182, 61

Broué, 2001, Reflection groups, braid groups, Hecke algebras, finite reductive groups, 1

Broué, 1993, Generic blocks of finite reductive groups, Astérisque, 212, 7

Broué, 1997, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, 73

Broué, 1980, A Frobenius theorem for blocks, Invent. Math., 56, 117, 10.1007/BF01392547

Brunat, 2020, Unitriangular shape of decomposition matrices of unipotent blocks, Ann. Math., 192, 583, 10.4007/annals.2020.192.2.7

Cabanes, 1988, Brauer morphism between modular Hecke algebras, J. Algebra, 115, 1, 10.1016/0021-8693(88)90280-3

Cabanes, 1994, Unicité du sous-groupe abélien distingué maximal dans certains sous-groupes de Sylow, C. R. Acad. Sci. Paris, 318, 889

Cabanes, 2004

Chuang, 2001, Derived equivalence in SL2(p2), Trans. Am. Math. Soc., 353, 2897, 10.1090/S0002-9947-01-02679-4

J. Chuang, R. Rouquier, Perverse equivalences, preprint.

Cliff, 2000, On centers of 2-blocks of Suzuki groups, J. Algebra, 226, 74, 10.1006/jabr.1999.8146

Collins, 1990

Craven

Craven, 2020, Brauer trees of unipotent blocks, J. Eur. Math. Soc., 22, 2821, 10.4171/JEMS/978

D. Craven, R. Rouquier, Perverse equivalences and genericity, in preparation.

Deligne, 1976, Representations of reductive groups over finite fields, Ann. Math., 103, 103, 10.2307/1971021

Digne, 2006, Endomorphisms of Deligne-Lusztig varieties, Nagoya Math. J., 183, 35, 10.1017/S0027763000009260

Digne, 2014, Parabolic Deligne-Lusztig varieties, Adv. Math., 257, 136, 10.1016/j.aim.2014.02.023

Digne, 2007, Cohomologie des variétés de Deligne-Lusztig, Adv. Math., 209, 749, 10.1016/j.aim.2006.06.001

Dipper, 1990, On quotients of Hom-functors and representations of finite general linear groups, I, J. Algebra, 130, 235, 10.1016/0021-8693(90)90111-Z

Dipper, 1989, The q-Schur algebra, Proc. Lond. Math. Soc., 59, 23, 10.1112/plms/s3-59.1.23

Dudas, 2012, Coxeter orbits and Brauer trees, Adv. Math., 229, 3398, 10.1016/j.aim.2012.02.011

Dudas, 2013, Cohomology of Deligne-Lusztig varieties for unipotent blocks of GLn(q), Represent. Theory, 17, 647, 10.1090/S1088-4165-2013-00446-6

Dudas, 2014, Coxeter orbits and Brauer trees II, Int. Math. Res. Not., 15, 4100, 10.1093/imrn/rnt070

Dudas, 2015, Decomposition matrices for low rank unitary groups, Proc. Lond. Math. Soc., 110, 1515, 10.1112/plms/pdv008

Dudas

Dudas, 2014, Coxeter orbits and Brauer trees III, J. Am. Math. Soc., 27, 1117, 10.1090/S0894-0347-2014-00791-8

Friedlander, 1975, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. Math., 101, 510, 10.2307/1970938

Friedlander, 1982

Friedlander, 1984, Cohomology of classifying spaces of complex Lie groups and related discrete groups, Comment. Math. Helv., 59, 347, 10.1007/BF02566356

Geck, 1990

Geck, 1992, Brauer trees of Hecke algebras, Commun. Algebra, 20, 2937, 10.1080/00927879208824499

Gorenstein, 1980

Grodal

He, 2008, On the affineness of Deligne-Lusztig varieties, J. Algebra, 320, 1207, 10.1016/j.jalgebra.2007.12.028

Hiß, 1990, Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definierender Charakteristik

Hodge

Humphreys, 2006, Modular Representations of Finite Groups of Lie Type, vol. 326

Jackowski, 1995, Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fundam. Math., 147, 99, 10.4064/fm-147-2-99-126

Kessar

Kishimoto, 2010, On the cohomology of free and twisted loop spaces, J. Pure Appl. Algebra, 214, 646, 10.1016/j.jpaa.2009.07.006

Knörr, 1989, Some remarks on a conjecture of Alperin, J. Lond. Math. Soc., 39, 48, 10.1112/jlms/s2-39.1.48

Leclerc, 1996, Canonical bases of q-deformed Fock spaces, Int. Math. Res. Not., 9, 447, 10.1155/S1073792896000293

Lusztig, 1976, Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 38, 101, 10.1007/BF01408569

Lusztig, 1978

Lusztig, 1998, Homology bases arising from reductive groups over a finite field, 53

Madsen, 2002

Malle, 2011

Navarro, 2010, A reduction theorem for the Alperin weight conjecture, Invent. Math., 184, 529, 10.1007/s00222-010-0295-2

T. Okuyama, Derived equivalences in SL2(q), preprint, 2000.

Orlik, 2008, Deligne-Lusztig varieties and period domains over finite fields, J. Algebra, 320, 1220, 10.1016/j.jalgebra.2008.03.035

Puig, 1990, Algèbres de source de certains blocs des groupes de Chevalley, Astérisque, 181–182, 221

Rider, 2013, Formality for the nilpotent cone and a derived Springer correspondence, Adv. Math., 235, 208, 10.1016/j.aim.2012.12.001

Rouquier, 2001, Block theory via stable and Rickard equivalences, 101

Rouquier, 2002, Complexes de chaînes étales et courbes de Deligne-Lusztig, J. Algebra, 57, 482, 10.1016/S0021-8693(02)00530-6

Späth, 2013, A reduction theorem for the blockwise Alperin weight conjecture, J. Group Theory, 16, 159, 10.1515/jgt-2012-0032

Springer, 1974, Regular elements of finite reflection groups, Invent. Math., 25, 159, 10.1007/BF01390173

Takeuchi, 1996, The group ring of GLn(q) and the q-Schur algebra, J. Math. Soc. Jpn., 48, 259, 10.2969/jmsj/04820259

Wong