Modular representations of finite groups and Lie theory
Tài liệu tham khảo
Alperin, 1987, Weights for finite groups, 369
Andersen, 2009, The classification of 2-compact groups, J. Am. Math. Soc., 22, 387, 10.1090/S0894-0347-08-00623-1
Arkhipov, 2004, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Am. Math. Soc., 17, 595, 10.1090/S0894-0347-04-00454-0
Aschbacher, 2000
Benson, 2007, Blocks inequivalent to their Frobenius twists, J. Algebra, 315, 588, 10.1016/j.jalgebra.2007.03.044
Ben-Zvi
Bonnafé
Bonnafé, 2017, Derived categories and Deligne-Lusztig varieties II, Ann. Math., 185, 609, 10.4007/annals.2017.185.2.5
Bonnafé, 2020, Translation by the full twist and Deligne-Lusztig varieties, J. Algebra, 558, 129, 10.1016/j.jalgebra.2019.10.010
Bonnafé, 2011, Computational proof of the Mackey formula for q>2, J. Algebra, 327, 506, 10.1016/j.jalgebra.2010.10.030
Bonnafé, 2003, Catégories dérivées et variétés de Deligne-Lusztig, Publ. Math. Inst. Hautes Études Sci., 97, 1, 10.1007/s10240-003-0013-3
Bonnafé, 2006, Coxeter orbits and modular representations, Nagoya Math. J., 183, 1, 10.1017/S0027763000009259
Bonnafé
Bouc, 2017, On a question of Rickard on tensor products of stably equivalent algebras, Exp. Math., 26, 31, 10.1080/10586458.2015.1107869
Brieskorn, 1971, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math., 12, 57, 10.1007/BF01389827
Broto, 2012, Equivalences between fusion systems of finite groups of Lie type, J. Am. Math. Soc., 25, 1, 10.1090/S0894-0347-2011-00713-3
Broué, 1990, Isométries parfaites, types de blocs, catégories dérivées, Astérisque, 181–182, 61
Broué, 2001, Reflection groups, braid groups, Hecke algebras, finite reductive groups, 1
Broué, 1993, Generic blocks of finite reductive groups, Astérisque, 212, 7
Broué, 1989, Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math., 395, 56
Broué, 1997, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, 73
Brunat, 2020, Unitriangular shape of decomposition matrices of unipotent blocks, Ann. Math., 192, 583, 10.4007/annals.2020.192.2.7
Cabanes, 1988, Brauer morphism between modular Hecke algebras, J. Algebra, 115, 1, 10.1016/0021-8693(88)90280-3
Cabanes, 1994, Unicité du sous-groupe abélien distingué maximal dans certains sous-groupes de Sylow, C. R. Acad. Sci. Paris, 318, 889
Cabanes, 2004
Chuang, 2001, Derived equivalence in SL2(p2), Trans. Am. Math. Soc., 353, 2897, 10.1090/S0002-9947-01-02679-4
J. Chuang, R. Rouquier, Perverse equivalences, preprint.
Collins, 1990
Craven
D. Craven, R. Rouquier, Perverse equivalences and genericity, in preparation.
Deligne, 1976, Representations of reductive groups over finite fields, Ann. Math., 103, 103, 10.2307/1971021
Digne, 2006, Endomorphisms of Deligne-Lusztig varieties, Nagoya Math. J., 183, 35, 10.1017/S0027763000009260
Digne, 2007, Cohomologie des variétés de Deligne-Lusztig, Adv. Math., 209, 749, 10.1016/j.aim.2006.06.001
Dipper, 1990, On quotients of Hom-functors and representations of finite general linear groups, I, J. Algebra, 130, 235, 10.1016/0021-8693(90)90111-Z
Dudas, 2013, Cohomology of Deligne-Lusztig varieties for unipotent blocks of GLn(q), Represent. Theory, 17, 647, 10.1090/S1088-4165-2013-00446-6
Dudas, 2014, Coxeter orbits and Brauer trees II, Int. Math. Res. Not., 15, 4100, 10.1093/imrn/rnt070
Dudas, 2015, Decomposition matrices for low rank unitary groups, Proc. Lond. Math. Soc., 110, 1515, 10.1112/plms/pdv008
Dudas
Dudas, 2014, Coxeter orbits and Brauer trees III, J. Am. Math. Soc., 27, 1117, 10.1090/S0894-0347-2014-00791-8
Friedlander, 1975, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. Math., 101, 510, 10.2307/1970938
Friedlander, 1982
Friedlander, 1984, Cohomology of classifying spaces of complex Lie groups and related discrete groups, Comment. Math. Helv., 59, 347, 10.1007/BF02566356
Geck, 1990
Gorenstein, 1980
Grodal
He, 2008, On the affineness of Deligne-Lusztig varieties, J. Algebra, 320, 1207, 10.1016/j.jalgebra.2007.12.028
Hiß, 1990, Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definierender Charakteristik
Hodge
Humphreys, 2006, Modular Representations of Finite Groups of Lie Type, vol. 326
Jackowski, 1995, Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fundam. Math., 147, 99, 10.4064/fm-147-2-99-126
Kessar
Kishimoto, 2010, On the cohomology of free and twisted loop spaces, J. Pure Appl. Algebra, 214, 646, 10.1016/j.jpaa.2009.07.006
Knörr, 1989, Some remarks on a conjecture of Alperin, J. Lond. Math. Soc., 39, 48, 10.1112/jlms/s2-39.1.48
Leclerc, 1996, Canonical bases of q-deformed Fock spaces, Int. Math. Res. Not., 9, 447, 10.1155/S1073792896000293
Lusztig, 1976, Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 38, 101, 10.1007/BF01408569
Lusztig, 1978
Lusztig, 1998, Homology bases arising from reductive groups over a finite field, 53
Madsen, 2002
Malle, 2011
Navarro, 2010, A reduction theorem for the Alperin weight conjecture, Invent. Math., 184, 529, 10.1007/s00222-010-0295-2
T. Okuyama, Derived equivalences in SL2(q), preprint, 2000.
Orlik, 2008, Deligne-Lusztig varieties and period domains over finite fields, J. Algebra, 320, 1220, 10.1016/j.jalgebra.2008.03.035
Puig, 1990, Algèbres de source de certains blocs des groupes de Chevalley, Astérisque, 181–182, 221
Rider, 2013, Formality for the nilpotent cone and a derived Springer correspondence, Adv. Math., 235, 208, 10.1016/j.aim.2012.12.001
Rouquier, 2001, Block theory via stable and Rickard equivalences, 101
Rouquier, 2002, Complexes de chaînes étales et courbes de Deligne-Lusztig, J. Algebra, 57, 482, 10.1016/S0021-8693(02)00530-6
Späth, 2013, A reduction theorem for the blockwise Alperin weight conjecture, J. Group Theory, 16, 159, 10.1515/jgt-2012-0032
Springer, 1974, Regular elements of finite reflection groups, Invent. Math., 25, 159, 10.1007/BF01390173
Takeuchi, 1996, The group ring of GLn(q) and the q-Schur algebra, J. Math. Soc. Jpn., 48, 259, 10.2969/jmsj/04820259
Wong