Finite group actions and étale cohomology
Publications Mathématiques de l'Institut des Hautes Études Scientifiques - Tập 80 - Trang 81-94 - 1994
Tóm tắt
If a finite group G acts on a quasi-projective variety X, then H*c(X,Z/n), the étale cohomology with compact support of X with coefficients inZ/n, has aZ/n[G]-module structure. It is well known that there is a finer invariant, an object RΓc(X,Z/n) of the derived category ofZ/n[G]-modules, whose cohomology is H*c(X,Z/n). We show that there is a finer invariant still, a bounded complex Λc(X,Z/n) of direct summands of permutationZ/n[G]-modules, well-defined up to chain homotopy equivalence, which is isomorphic to RΓc(X,Z/n) in the derived category. This complex has many properties analogous to those of the simplicial chain complex of a simplicial complex with a group action. There are similar results forl-adic cohomology.
Tài liệu tham khảo
M. Artin et al., SGA4Théorie des topos et cohomologie étale des schémas, Lecture Notes in Mathematics,269, 270, 305 (Berlin, Springer, 1972–1973).
A. Beilinson, J. Bernstein etP. Deligne,Faisceaux pervers, Astérisque,100 (Paris, Société mathématique de France, 1982).
M. Broué, Isométries parfaites, types de blocs, catégories dérivées,Astérisque,181–182 (Paris, Société mathématique de France, 1990), 61–92.
M. Broué etL. Puig, Characters and local structure in G-algebras,J. Algebra,63 (1980), 306–317.
P. Deligne etG. Lusztig, Representations of reductive groups over finite fields,Ann. of Math.,103 (1976), 103–161.
A. Grothendieck et al., SGA5Cohomologie l-adique et fonctions L,Lecture Notes in Mathematics,589 (Berlin, Springer, 1977).
R. Hartshorne,Residues and duality,Lecture Notes in Mathematics,20 (Berlin, Springer, 1966).
J. Rickard, Derived equivalences as derived functors,J. London Math. Soc. (2),43 (1991), 37–48.
L. L. Scott, Modular permutation representations,Trans. Amer. Math. Soc.,175 (1973), 101–121.
B. Srinivasan,Representations of finite Chevalley groups,Lecture Notes in Mathematics,764 (Berlin, Springer, 1979).
J.-L. Verdier, Catégories dérivées, état 0,Lecture Notes in Mathematics,569 (Berlin, Springer, 1977), 262–311.