Affineness of Deligne–Lusztig varieties for minimal length elements

Journal of Algebra - Tập 320 - Trang 1200-1206 - 2008
Cédric Bonnafé1, Raphaël Rouquier2
1Laboratoire de Mathématiques de Besançon (CNRS – UMR 6623), Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
2Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, UK

Tài liệu tham khảo

Borel, 1991, Linear Algebraic Groups, vol. 126 Broué, 1997, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne–Lusztig associées, 73 Deligne, 1997, Action du groupe des tresses sur une catégorie, Invent. Math., 128, 159, 10.1007/s002220050138 Deligne, 1976, Representations of reductive groups over finite fields, Ann. of Math., 103, 103, 10.2307/1971021 Digne, 2007, Cohomologie des variétés de Deligne–Lusztig, Adv. Math., 209, 749, 10.1016/j.aim.2006.06.001 Geck, 2000, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra, 229, 570, 10.1006/jabr.1999.8253 Geck, 1997, “Good” elements of finite Coxeter groups and representation of Iwahori–Hecke algebras, Proc. London Math. Soc., 74, 275, 10.1112/S0024611597000105 Geck, 2000, Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, vol. 21 He, 2007, Minimal length elements in some double cosets of Coxeter groups, Adv. Math., 215, 469, 10.1016/j.aim.2007.04.005 He, 2008, On the affineness of Deligne–Lusztig varieties, J. Algebra, 320, 1207, 10.1016/j.jalgebra.2007.12.028 Lusztig, 1976, On the finiteness of the number of unipotent classes, Invent. Math., 34, 201, 10.1007/BF01403067 Lusztig, 1976, Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 38, 101, 10.1007/BF01408569 Orlik, 2008, Deligne–Lusztig varieties and period domains over finite fields, J. Algebra, 320, 1220, 10.1016/j.jalgebra.2008.03.035