Affineness of Deligne–Lusztig varieties for minimal length elements
Tài liệu tham khảo
Borel, 1991, Linear Algebraic Groups, vol. 126
Broué, 1997, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne–Lusztig associées, 73
Deligne, 1997, Action du groupe des tresses sur une catégorie, Invent. Math., 128, 159, 10.1007/s002220050138
Deligne, 1976, Representations of reductive groups over finite fields, Ann. of Math., 103, 103, 10.2307/1971021
Digne, 2007, Cohomologie des variétés de Deligne–Lusztig, Adv. Math., 209, 749, 10.1016/j.aim.2006.06.001
Geck, 2000, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra, 229, 570, 10.1006/jabr.1999.8253
Geck, 1997, “Good” elements of finite Coxeter groups and representation of Iwahori–Hecke algebras, Proc. London Math. Soc., 74, 275, 10.1112/S0024611597000105
Geck, 2000, Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras, vol. 21
He, 2007, Minimal length elements in some double cosets of Coxeter groups, Adv. Math., 215, 469, 10.1016/j.aim.2007.04.005
He, 2008, On the affineness of Deligne–Lusztig varieties, J. Algebra, 320, 1207, 10.1016/j.jalgebra.2007.12.028
Lusztig, 1976, On the finiteness of the number of unipotent classes, Invent. Math., 34, 201, 10.1007/BF01403067
Lusztig, 1976, Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 38, 101, 10.1007/BF01408569
Orlik, 2008, Deligne–Lusztig varieties and period domains over finite fields, J. Algebra, 320, 1220, 10.1016/j.jalgebra.2008.03.035