Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis

Michel Broué1, Gunter Malle2
1Ecole Normale Supérieure, D.M.I., 45 rue d'Ulm, F-75005, Paris, France
2I.W.R., Heidelberg

Tóm tắt

Từ khóa


Tài liệu tham khảo

Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Oxford: Clarendon Press 1985

Borel, A., Tits, J.: Groupes réductifs. Publ. Math., Inst. Hautes Etud. Sci.27, 55–151 (1965)

Bourbaki, N.: Groupes et algèbres de Lie, Chap. 4, 5 et 6. Paris: Hermann 1968

Boyce, R.: Cyclotomic polynomials and irreducible representations of finite groups of Lie type. Manuscrit non publié

Chevalley, C.: Classification des groupes de Lie algébriques. Sémin. C. Chevalley. Paris: Ecole Normale Supérieure 1958

Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math.77, 778–782 (1955)

Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. Math.103, 103–161 (1976)

Demazure, M.: Données radicielles, exposé XXI, Schémas en groupes III, dirigé par M. Demazure et A. Grothendieck. (Lect. Notes Math., vol. 153) Berlin Heidelberg New York: Springer 1970

Deriziotis, D.I.: The centralizers of semi-simple elements of the Chevalley groupsE 7 andE 8. Tokyo J. Math.6, 191–216 (1983)

Gager, P.C.: Maximal tori in finite groups of Lie type. Thesis, University of Warwick, 1973

Springer, T.A.: Linear algebraic groups. (Prog. Math., vol. 9, Coates, J., Helgason, S. eds.) Boston: Birkhäuser 1981

Springer, T.A.: Regular elements of finite reflection groups. Invent. Math.25, 159–198 (1974)

Springer, T.A.: The order of a finite group of Lie type. In: Amitsur, S.A. et al. (eds.) Algebraists homage: Papers in ring theory and related topics. (Contemp. Math., vol. 13, pp. 81–89) Providence: Am. Math. Soc. 1982

Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Am. Math. Soc.80, Chap. 11 (1968)

Tits, J.: Uniqueness and presentation of Kac-Moody groups over fields. J. Algebra105, 542–573 (1987)