On unipotent blocks and their ordinary characters

Springer Science and Business Media LLC - Tập 117 - Trang 149-164 - 1994
Marc Cabanes1, Michel Enguehard1
1DMI-ENS, Paris, France

Tài liệu tham khảo

[AB] Alperin, J., Broué, M.: Local methods in block theory. Ann. Math.110, 143–157 (1979) [BT] Borel, A., Tits, J.: Groupes Réductifs. Publ. Math., Inst. Hautes Étud Sci.27, 55–151 (1965) [B] Brauer, R.: On blocks and sections in finite groups. I. Am. J. Math.89, 1115–1136 (1967) [Br] Broué, M.: Les ℓ des groupes GL (n, q) etU(n, q 2) et leurs structures locales. Astérisque133–134, 159–188 (1986) [BM] Broué, M., Malle, G.: Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis. Math. Ann.292, 241–262 (1992) [BMi] Broué, M., Michel, J.: Blocs et séries de Lusztig dans un groupe réductif fini. J. reine angew. Math.395, 56–67 (1989) [BMM] Broué, M., Malle, G., Michel, J.: Generic blocks of finite reductive groups. Astérisque (to appear) [C] Cabanes, M.: Local structure of thep-blocks of\(\tilde S_n \). Math. Z.198, 519–543 (1988) [CE] Cabanes, M., Enguehard, M.: Unipotent blocks of finite reductive groups of a given type. Math. Z.213, 479–490 (1993) [Ca1] Carter, R. W.: Conjugacy classes in the Weyl group. Compositio Math.25, 1–59 (1972) [Ca2] Carter, R. W.: Finite Groups of Lie type: Conjugacy classes and Complex Characters. New York, Wiley, 1985 [DM1] Digne, F., Michel, J.: Théorie de Deligne-Lusztig et caractères des groupes linéaires et unitaires. J. of Algebra107, 217–255 (1987) [DM2] Digne, F., Michel, J.: Representations of finite groups of Lie type. Cambridge: Cambridge University Press, 1991 [DM3] Digne, F., Michel, J.: Groupes Réductifs Non Connexes. Rapp. Rech LMENS92-2, 1992 [FS1] Fong, P., Srinivasan, B.: The blocks of finite general and unitary groups. Invent. Math.69, 109–153 (1982) [FS2] Fong, P. Srinivasan, B.: Generalized Harish-Chandra Theory for Unipotent Characters of Finite Classical Groups. J. of Algebra104, 301–309 (1986 [FS3] Fong, P., Srinivasan, B.: The blocks of finite classical groups. J. reine angew. Math.396, 122–191 (1989) [GH] Geck, M., Hiss, G.: Basic sets of Brauer characters of finite groups of Lie type. J. reine angew. Math.418, 173–188 (1991) [H] Hiss, G.: Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definie render Charakteristik. Thesis 1990 [L] Lusztig, G.: On the representations of reductive groups with disconnected centre. Astérisque168, 157–166 (1988) [LS] Lusztig, G., Srinivasan, B.: The characters of the finite unitary groups. J. of Algebra49, 167–171 (1977) [NT] Nagao, H., Tsushima, Y.: Representations of Finite Groups. New York: Academic, 1989 [P1] Puig, Ll.: The Nakayama conjectures and the Brauer pairs. Pub. Math Univ. Paris VII,25, (1987) [P2] Puig, Ll.: Algèbres de source de certains blocs des groupes de Chevalley. Astérisque181–182, 221–236 (1990) [S] Schewe, K.: Blöcke exzeptioneller Chevalley-Gruppen. Bonn. Math. Schr.165, (1985) [SSt] Springer, T., Steinberg, R.: Conjugacy classes. In: Borel A. et al., (eds.) Seminar on algebraic groups and related finite groups. Lect. Notes Math. vol. 131, Berlin Heidelberg New York: Springer (1970) [St] Steinberg, R.: Endomorphisms of linear algebraic groups. Mem.80, (1968)