Malignant transformation in a defined genetic background: proteome changes displayed by 2D-PAGE

Molecular Cancer - Tập 9 - Trang 1-15 - 2010
Stephanie M Pütz1,2, Fotini Vogiatzi3, Thorsten Stiewe3, Albert Sickmann4
1Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, (Protein Mass Spectrometry and Functional Proteomics), Würzburg, Germany
2Institute of Medical Radiation and Cell Research (MSZ), University of Würzburg, Würzburg, Germany
3Molecular Oncology, Philipps-University Marburg, Marburg, Germany
4Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany

Tóm tắt

Cancer arises from normal cells through the stepwise accumulation of genetic alterations. Cancer development can be studied by direct genetic manipulation within experimental models of tumorigenesis. Thereby, confusion by the genetic heterogeneity of patients can be circumvented. Moreover, identification of the critical changes that convert a pre-malignant cell into a metastatic, therapy resistant tumor cell, however, is one necessary step to develop effective and selective anti-cancer drugs. Thus, for the current study a cell culture model for malignant transformation was used: Primary human fibroblasts of the BJ strain were sequentially transduced with retroviral vectors encoding the genes for hTERT (cell line BJ-T), simian virus 40 early region (SV40 ER, cell line BJ-TE) and H-Ras V12 (cell line BJ-TER). The stepwise malignant transformation of human fibroblasts was analyzed on the protein level by differential proteome analysis. We observed 39 regulated protein spots and therein identified 67 different proteins. The strongest change of spot patterns was detected due to integration of SV40 ER. Among the proteins being significantly regulated during the malignant transformation process well known proliferating cell nuclear antigen (PCNA) as well as the chaperones mitochondrial heat shock protein 75 kDa (TRAP-1) and heat shock protein HSP90 were identified. Moreover, we find out, that TRAP-1 is already up-regulated by means of SV40 ER expression instead of H-Ras V12. Furthermore Peroxiredoxin-6 (PRDX6), Annexin A2 (p36), Plasminogen activator inhibitor 2 (PAI-2) and Keratin type II cytoskeletal 7 (CK-7) were identified to be regulated. For some protein candidates we confirmed our 2D-PAGE results by Western Blot. These findings give further hints for intriguing interactions between the p16-RB pathway, the mitochondrial chaperone network and the cytoskeleton. In summary, using a cell culture model for malignant transformation analyzed with 2D-PAGE, proteome and cellular changes can be related to defined steps of tumorigenesis.

Tài liệu tham khảo

Van Dyke T, Jacks T: Cancer modeling in the modern era: progress and challenges. Cell. 2002, 108: 135-144. 10.1016/S0092-8674(02)00621-9

Rangarajan A, Weinberg RA: Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer. 2003, 3: 952-959. 10.1038/nrc1235

Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE: Extension of life-span by introduction of telomerase into normal human cells. Science. 1998, 279: 349-352. 10.1126/science.279.5349.349

Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA: Creation of human tumour cells with defined genetic elements. Nature. 1999, 400: 464-468. 10.1038/22780

Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA: Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 2001, 15: 50-65. 10.1101/gad.828901

Lundberg AS, Randell SH, Stewart SA, Elenbaas B, Hartwell KA, Brooks MW, Fleming MD, Olsen JC, Miller SW, Weinberg RA, Hahn WC: Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene. 2002, 21: 4577-4586. 10.1038/sj.onc.1205550

MacKenzie KL, Franco S, Naiyer AJ, May C, Sadelain M, Rafii S, Moore MA: Multiple stages of malignant transformation of human endothelial cells modelled by co-expression of telomerase reverse transcriptase, SV40 T antigen and oncogenic N-ras. Oncogene. 2002, 21: 4200-4211. 10.1038/sj.onc.1205425

Rich JN, Guo C, McLendon RE, Bigner DD, Wang XF, Counter CM: A genetically tractable model of human glioma formation. Cancer Res. 2001, 61: 3556-3560.

Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, DeCaprio JA, Weinberg RA: Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol. 2002, 22: 2111-2123. 10.1128/MCB.22.7.2111-2123.2002

Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, Hahn WC, Stukenberg PT, Shenolikar S, Uchida T, Counter CM, Nevins JR, Means AR, Sears R: A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol. 2004, 6: 308-318. 10.1038/ncb1110

Rodriguez-Viciana P, Collins C, Fried M: Polyoma and SV40 proteins differentially regulate PP2A to activate distinct cellular signaling pathways involved in growth control. Proc Natl Acad Sci USA. 2006, 103: 19290-19295. 10.1073/pnas.0609343103

Beitzinger M, Hofmann L, Oswald C, Beinoraviciute-Kellner R, Sauer M, Griesmann H, Bretz AC, Burek C, Rosenwald A, Stiewe T: p73 poses a barrier to malignant transformation by limiting anchorage-independent growth. Embo J. 2008, 27: 792-803. 10.1038/emboj.2008.13

Görg A, Weiss W, Dunn MJ: Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004, 4: 3665-3685. 10.1002/pmic.200401031

Klose J: Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 1975, 26: 231-243.

Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997, 88: 593-602. 10.1016/S0092-8674(00)81902-9

Lamanda A, Zahn A, Roder D, Langen H: Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution. Proteomics. 2004, 4: 599-608. 10.1002/pmic.200300587

Moebius J, Denker K, Sickmann A: Ruthenium (II) tris-bathophenanthroline disulfonate is well suitable for Tris-Glycine PAGE but not for Bis-Tris gels. Proteomics. 2007, 7: 524-527. 10.1002/pmic.200600642

Sickmann A, Dormeyer W, Wortelkamp S, Woitalla D, Kuhn W, Meyer HE: Towards a high resolution separation of human cerebrospinal fluid. Journal of Chromatography B. 2002, 771: 167-196. 10.1016/S1570-0232(01)00626-2.

Westermeier R, Marouga R: Protein detection methods in proteomics research. Biosci Rep. 2005, 25: 19-32. 10.1007/s10540-005-2845-1

Richert S, Luche S, Chevallet M, Van Dorsselaer A, Leize-Wagner E, Rabilloud T: About the mechanism of interference of silver staining with peptide mass spectrometry. Proteomics. 2004, 4: 909-916. 10.1002/pmic.200300642

Winkler C, Denker K, Wortelkamp S, Sickmann A: Silver- and Coomassie-staining protocols: detection limits and compatibility with ESI MS. Electrophoresis. 2007, 28: 2095-2099. 10.1002/elps.200600670

Rabilloud T, Strub JM, Luche S, van Dorsselaer A, Lunardi J: A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics. 2001, 1: 699-704. 10.1002/1615-9861(200104)1:5<699::AID-PROT699>3.0.CO;2-C

Young T, Mei F, Liu J, Bast RC, Kurosky A, Cheng X: Proteomics analysis of H-RAS-mediated oncogenic transformation in a genetically defined human ovarian cancer model. Oncogene. 2005, 24: 6174-6184. 10.1038/sj.onc.1208753

Chen WQ, Kang SU, Lubec G: Protein profiling by the combination of two independent mass spectrometry techniques. Nat Protoc. 2006, 1: 1446-1452. 10.1038/nprot.2006.246

Lottspeich F, Engels JW: Bioanalytik. 2006, München: Spektrum, 2,

Ahuja D, Saenz-Robles MT, Pipas JM: SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene. 2005, 24: 7729-7745. 10.1038/sj.onc.1209046

MacKenzie KL, Franco S, May C, Sadelain M, Moore MA: Mass cultured human fibroblasts overexpressing hTERT encounter a growth crisis following an extended period of proliferation. Exp Cell Res. 2000, 259: 336-350. 10.1006/excr.2000.4982

Zhu J, Wang H, Bishop JM, Blackburn EH: Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc Natl Acad Sci USA. 1999, 96: 3723-3728. 10.1073/pnas.96.7.3723

MacKenzie KL, Franco S, Naiyer AJ, May C, Sadelain M, Rafii S, Moore MA: Multiple stages of malignant transformation of human endothelial cells modelled by co-expression of telomerase reverse transcriptase, SV40 T antigen and oncogenic N-ras. Oncogene. 2002, 21: 4200-4211. 10.1038/sj.onc.1205425

Fujita Y, Nakanishi T, Hiramatsu M, Mabuchi H, Miyamoto Y, Miyamoto A, Shimizu A, Tanigawa N: Proteomics-based approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. Clin Cancer Res. 2006, 12: 6415-6420. 10.1158/1078-0432.CCR-06-1315

Manevich Y, Fisher AB: Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic Biol Med. 2005, 38: 1422-1432. 10.1016/j.freeradbiomed.2005.02.011

Noble M, Mayer-Proschel M, Proschel C: Redox regulation of precursor cell function: insights and paradoxes. Antioxid Redox Signal. 2005, 7: 1456-1467. 10.1089/ars.2005.7.1456

Medcalf RL, Stasinopoulos SJ: The undecided serpin. The ins and outs of plasminogen activator inhibitor type 2. Febs J. 2005, 272: 4858-4867. 10.1111/j.1742-4658.2005.04879.x

Duffy MJ: The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des. 2004, 10: 39-49. 10.2174/1381612043453559

Darnell GA, Antalis TM, Johnstone RW, Stringer BW, Ogbourne SM, Harrich D, Suhrbier A: Inhibition of retinoblastoma protein degradation by interaction with the serpin plasminogen activator inhibitor 2 via a novel consensus motif. Mol Cell Biol. 2003, 23: 6520-6532. 10.1128/MCB.23.18.6520-6532.2003

Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC: Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell. 2007, 131: 257-270. 10.1016/j.cell.2007.08.028

Isaacs JS, Xu W, Neckers L: Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell. 2003, 3: 213-217. 10.1016/S1535-6108(03)00029-1

Souza-Rodrigues E, Estanyol JM, Friedrich-Heineken E, Olmedo E, Vera J, Canela N, Brun S, Agell N, Hubscher U, Bachs O, Jaumot M: Proteomic analysis of p16(ink4a)-binding proteins. Proteomics. 2007, 7: 4102-4111. 10.1002/pmic.200700133

Hayes MJ, Merrifield CJ, Shao D, Ayala-Sanmartin J, Schorey CD, Levine TP, Proust J, Curran J, Bailly M, Moss SE: Annexin 2 binding to phosphatidylinositol 4, 5-bisphosphate on endocytic vesicles is regulated by the stress response pathway. J Biol Chem. 2004, 279: 14157-14164. 10.1074/jbc.M313025200

Roberts K, Bhatia K, Stanton P, Lord R: Proteomic analysis of selected prognostic factors of breast cancer. Proteomics. 2004, 4: 784-792. 10.1002/pmic.200300633

Ramos-Vara JA, Miller MA, Boucher M, Roudabush A, Johnson GC: Immunohistochemical detection of uroplakin III, cytokeratin 7, and cytokeratin 20 in canine urothelial tumors. Vet Pathol. 2003, 40: 55-62. 10.1354/vp.40-1-55