Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer

Breast Cancer Research - Tập 9 - Trang 1-15 - 2007
Xin-Zhong Chang1,2, Da-Qiang Li1, Yi-Feng Hou1, Jiong Wu1, Jin-Song Lu1, Gen-Hong Di1, Wei Jin1, Zhou-Luo Ou1, Zhen-Zhou Shen1, Zhi-Ming Shao1
1Breast Cancer Institute, Cancer Hospital, Department of Oncology, Shanghai Medical College, Institutes of Biomedical Science, Fudan University, Shanghai, People's Republic of China
2Tianjin Medical University Cancer Institute and Hospital, Tianjin, China

Tóm tắt

The molecular mechanisms involved in breast cancer metastasis still remain unclear to date. In our previous study, differential expression of peroxiredoxin 6 was found between the highly metastatic MDA-MB-435HM cells and their parental counterparts, MDA-MB-435 cells. In this study, we investigated the effects of peroxiredoxin 6 on the proliferation and metastatic potential of human breast cancer cells and their potential mechanism. Expression of peroxiredoxin 6 in the highly metastatic MDA-MB-231HM cells was investigated by RT-PCR, real-time PCR and western blot. A recombinant expression plasmid of the human peroxiredoxin 6 gene was constructed and transfected into MDA-MB-231 and MDA-MB-435 cells. The effects of peroxiredoxin 6 on the proliferation and invasion of MDA-MB-231 and MDA-MB-435 cells were investigated by the Cell Counting Kit-8 method, colony-formation assay, adhesion assay, flow cytometry and invasion assay in vitro. miRNA was used to downregulate the expression of peroxiredoxin 6. Genes related to the invasion and metastasis of cancer were determined by RT-PCR, real-time PCR and western blot. The tumorigenicity and spontaneously metastatic capability regulated by peroxiredoxin 6 were determined using an orthotopic xenograft tumor model in athymic mice. Overexpression of peroxiredoxin 6 in MDA-MB-231HM cells compared with their parental counterparts was confirmed. Upregulation of peroxiredoxin 6 enhanced the in vitro proliferation and invasion of breast cancer cells. The enhancement was associated with decreasing levels of tissue inhibitor of matrix metalloproteinase (TIMP)-2 and increasing levels of the urokinase-type plasminogen activator receptor (uPAR), Ets-1 (E26 transformation-specific-1), matrix metalloproteinase (MMP)-9 and RhoC (ras homolog gene family, member C) expression. The results were further demonstrated by RNA interference experiments in vitro. In an in vivo study, we also demonstrated that peroxiredoxin 6-transfected breast cancer cells grew much faster and had more pulmonary metastases than control cells. By contrast, peroxiredoxin 6 knockdown breast cancer cells grew more slowly and had fewer pulmonary metastases. Effects similar to those of peroxiredoxin 6 on the uPAR, Ets-1, MMP-9, RhoC and TIMP-2 expression observed in in vitro studies were found in the in vivo study. Overexpression of peroxiredoxin 6 leads to a more invasive phenotype and metastatic potential in human breast cancer, at least in part, through regulation of the levels of uPAR, Ets-1, MMP-9, RhoC and TIMP-2 expression.

Tài liệu tham khảo

Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ: Cancer statistics, 2007. CA Cancer J Clin. 2007, 57: 43-66. Li DQ, Wang L, Fei F, Hou YF, Luo JM, Zeng R, Wu J, Lu JS, Di GH, Ou ZL, et al: Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics. 2006, 6: 3352-3368. 10.1002/pmic.200500617. Shichi H, Demar JC: Non-selenium glutathione peroxidase without glutathione S-transferase activity from bovine ciliary body. Exp Eye Res. 1990, 50: 513-520. 10.1016/0014-4835(90)90040-2. Nagase T, Miyajima N, Tanaka A, Sazuka T, Seki N, Sato S, Tabata S, Ishikawa K, Kawarabayasi Y, Kotani H, et al: Prediction of the coding sequences of unidentified human genes. III. The coding sequences of 40 new genes (KIAA0081-KIAA0120) deduced by analysis of cDNA clones from human cell line KG-1 (supplement). DNA Res. 1995, 2: 51-59. 10.1093/dnares/2.1.51. Kim TS, Sundaresh CS, Feinstein SI, Dodia C, Skach WR, Jain MK, Nagase T, Seki N, Ishikawa K, Nomura N, et al: Identification of a human cDNA clone for lysosomal type Ca2+-independent phospholipase A2 and properties of the expressed protein. J Biol Chem. 1997, 272: 2542-2550. 10.1074/jbc.272.4.2542. Kang SW, Baines IC, Rhee SG: Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem. 1998, 273: 6303-6311. 10.1074/jbc.273.11.6303. Manevich Y, Fisher AB: Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic Biol Med. 2005, 38: 1422-1432. 10.1016/j.freeradbiomed.2005.02.011. Chang XZ, Wang ZM, Yu JM, Tian FG, Jin W, Zhang Y, Yu J, Li LF, Liu XF, Li ZW, et al: Isolation of a human gallbladder cancer cell clone with high invasive phenotype in vitro and metastatic potential in orthotopic model and inhibition of its invasiveness by heparanase antisense oligodeoxynucleotides. Clin Exp Metastasis. 2007, 24: 25-38. 10.1007/s10585-006-9053-7. Zhang Z, Futamura M, Vikis HG, Wang M, Li J, Wang Y, Guan KL, You M: Positional cloning of the major quantitative trait locus underlying lung tumor susceptibility in mice. Proc Natl Acad Sci USA. 2003, 100: 12642-12647. 10.1073/pnas.2133947100. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987, 47: 3239-3245. Hou YF, Yuan ST, Li HC, Wu J, Lu JS, Liu G, Lu LJ, Shen ZZ, Ding J, Shao ZM: ERbeta exerts multiple stimulative effects on human breast carcinoma cells. Oncogene. 2004, 23: 5799-5806. 10.1038/sj.onc.1207765. Noh DY, Ahn SJ, Lee RA, Kim SW, Park IA, Chae HZ: Overexpression of peroxiredoxin in human breast cancer. Anticancer Res. 2001, 21: 2085-2090. Karihtala P, Mantyniemi A, Kang SW, Kinnula VL, Soini Y: Peroxiredoxins in breast carcinoma. Clin Cancer Res. 2003, 9: 3418-3424. Liu Y, Liu H, Han B, Zhang JT: Identification of 14-3-3sigma as a contributor to drug resistance in human breast cancer cells using functional proteomic analysis. Cancer Res. 2006, 66: 3248-3255. 10.1158/0008-5472.CAN-05-3801. Wang T, Tamae D, LeBon T, Shively JE, Yen Y, Li JJ: The role of peroxiredoxin II in radiation-resistant MCF-7 breast cancer cells. Cancer Res. 2005, 65: 10338-10346. 10.1158/0008-5472.CAN-04-4614. Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y, Maeda E, Noguchi S, Kato K: Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol. 2005, 23: 422-431. 10.1200/JCO.2005.09.078. Wang X, Phelan SA, Petros C, Taylor EF, Ledinski G, Jurgens G, Forsman-Semb K, Paigen B: Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: significance of genetic background for assessing atherosclerosis. Atherosclerosis. 2004, 177: 61-70. 10.1016/j.atherosclerosis.2004.06.007. Krapfenbauer K, Yoo BC, Fountoulakis M, Mitrova E, Lubec G: Expression patterns of antioxidant proteins in brains of patients with sporadic Creutzfeldt-Jacob disease. Electrophoresis. 2002, 23: 2541-2547. 10.1002/1522-2683(200208)23:15<2541::AID-ELPS2541>3.0.CO;2-1. Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G: Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res. 2003, 967: 152-160. 10.1016/S0006-8993(02)04243-9. Ouyang X, DeWeese TL, Nelson WG, Abate-Shen C: Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 2005, 65: 6773-6779. 10.1158/0008-5472.CAN-05-1948. Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA: Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature. 2003, 424: 561-565. 10.1038/nature01819. de Souza GA, Godoy LM, Teixeira VR, Otake AH, Sabino A, Rosa JC, Dinarte AR, Pinheiro DG, Silva WA, Eberlin MN, et al: Proteomic and SAGE profiling of murine melanoma progression indicates the reduction of proteins responsible for ROS degradation. Proteomics. 2006, 6: 1460-1470. 10.1002/pmic.200500243. Quan C, Cha EJ, Lee HL, Han KH, Lee KM, Kim WJ: Enhanced expression of peroxiredoxin I and VI correlates with development, recurrence and progression of human bladder cancer. J Urol. 2006, 175: 1512-1516. 10.1016/S0022-5347(05)00659-2. Kinnula VL, Lehtonen S, Sormunen R, Kaarteenaho-Wiik R, Kang SW, Rhee SG, Soini Y: Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. J Pathol. 2002, 196: 316-323. 10.1002/path.1042. Soini Y, Kallio JP, Hirvikoski P, Helin H, Kellokumpu-Lehtinen P, Kang SW, Tammela TL, Peltoniemi M, Martikainen PM, Kinnula VL: Oxidative/nitrosative stress and peroxiredoxin 2 are associated with grade and prognosis of human renal carcinoma. Apmis. 2006, 114: 329-337. 10.1111/j.1600-0463.2006.apm_315.x. Wiegand S, Dunne AA, Muller HH, Mandic R, Barth P, Davis RK, Werner JA: Metaanalysis of the significance of matrix metalloproteinases for lymph node disease in patients with head and neck squamous cell carcinoma. Cancer. 2005, 104: 94-100. 10.1002/cncr.21131. Wang Y: The role and regulation of urokinase-type plasminogen activator receptor gene expression in cancer invasion and metastasis. Med Res Rev. 2001, 21: 146-170. 10.1002/1098-1128(200103)21:2<146::AID-MED1004>3.0.CO;2-B. Pillay V, Dass CR, Choong PF: The urokinase plasminogen activator receptor as a gene therapy target for cancer. Trends Biotechnol. 2007, 25: 33-39. 10.1016/j.tibtech.2006.10.011. Kim HJ, Park CI, Park BW, Lee HD, Jung WH: Expression of MT-1 MMP, MMP2, MMP9 and TIMP2 mRNAs in ductal carcinoma in situ and invasive ductal carcinoma of the breast. Yonsei Med J. 2006, 47: 333-342. Lincoln DW, Bove K: The transcription factor Ets-1 in breast cancer. Front Biosci. 2005, 10: 506-511. 10.2741/1546. Kleer CG, Griffith KA, Sabel MS, Gallagher G, van Golen KL, Wu ZF, Merajver SD: RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Res Treat. 2005, 93: 101-110. 10.1007/s10549-005-4170-6.