Highly selective H2S gas sensor based on WO3-coated SnO2 nanowires

Materials Today Communications - Tập 26 - Trang 102094 - 2021
Tran Thi Ngoc Hoa1,2, Dang Thi Thanh Le1, Nguyen Van Toan1,2,3, Nguyen Van Duy1, Chu Manh Hung1, Nguyen Van Hieu3, Nguyen Duc Hoa1
1International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, Hanoi, Viet Nam
2Hanoi Medical University, Hanoi, Viet Nam
3Faculty of Electrical and Electronic Engineering, Phenikaa University, Hanoi, Viet Nam

Tài liệu tham khảo

Pandey, 2012, A review of sensor-based methods for monitoring hydrogen sulfide, TrAC Trends Anal. Chem., 32, 87, 10.1016/j.trac.2011.08.008

Girardin, 1997, Modelling of SO2 detection by tin dioxide gas sensors, Sens. Actuators B Chem., 43, 147, 10.1016/S0925-4005(97)00149-4

Turker, 2012, Monitoring and control of biogas desulphurization using oxidation reduction potential under denitrifiying conditions, J. Chem. Technol. Biotechnol., 87, 682, 10.1002/jctb.2765

Xue, 2008, Synthesis and H2S sensing properties of CuO−SnO2 Core/Shell PN-Junction nanorods, J. Phys. Chem. C, 112, 12157, 10.1021/jp8037818

Van Hoang, 2018, Facile on-chip electrospinning of ZnFe2O4 nanofiber sensors with excellent sensing performance to H2S down ppb level, J. Hazard. Mater., 360, 6, 10.1016/j.jhazmat.2018.07.084

Sui, 2020, In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S, J. Hazard. Mater., 385, 121570, 10.1016/j.jhazmat.2019.121570

Ng. Van Hieu, Dây Nano ôxít kim loại bán dẫn, (n.d.).

Hung, 2020, Facile synthesis of ultrafine rGO/WO3 nanowire nanocomposites for highly sensitive toxic NH3 gas sensors, Mater. Res. Bull., 125, 110810, 10.1016/j.materresbull.2020.110810

Ngoc Hoa, 2019, An effective H2S sensor based on SnO2 nanowires decorated with NiO nanoparticles by electron beam evaporation, RSC Adv., 9, 13887, 10.1039/C9RA01105F

Kim, 2011, Mechanism study of ZnO nanorod-bundle sensors for H 2 S gas sensing, J. Phys. Chem. C, 115, 7218, 10.1021/jp110129f

Kida, 2013, Pore and particle size control of gas sensing films using SnO 2 nanoparticles synthesized by seed-mediated growth: design of highly sensitive gas sensors, J. Phys. Chem. C, 117, 17574, 10.1021/jp4045226

Mickelson, 2012, Low-power, fast, selective nanoparticle-based hydrogen sulfide gas sensor, Appl. Phys. Lett., 100, 173110, 10.1063/1.3703761

Kruefu, 2015, Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods, Sens. Actuators B. Chem., 10.1016/j.snb.2015.03.037

Ma, 2013, α-Fe2O3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas, Nanoscale, 5, 895, 10.1039/C2NR33201A

Zhang, 2010, CuO nanosheets for sensitive and selective determination of H2S with high recovery ability, J. Phys. Chem. C, 114, 19214, 10.1021/jp106098z

Tharsika, 2014, Enhanced ethanol gas sensing properties of SnO2-Core/ZnO-Shell nanostructures, Sensors, 14, 14586, 10.3390/s140814586

Choi, 2014, Dual functional sensing mechanism in SnO2–ZnO core–Shell nanowires, ACS Appl. Mater. Interfaces, 6, 8281, 10.1021/am501107c

Park, 2013, UV-enhanced NO2 gas sensing properties of SnO2 -Core/ZnO-Shell nanowires at room temperature, ACS Appl. Mater. Interfaces, 5, 4285, 10.1021/am400500a

Katoch, 2015, Bifunctional sensing mechanism of SnO2–ZnO composite nanofibers for drastically enhancing the sensing behavior in H2 gas, ACS Appl. Mater., 7, 11351, 10.1021/acsami.5b01817

Sharma, 2013, WO3 nanoclusters–SnO2 film gas sensor heterostructure with enhanced response for NO2, Sens. Actuators B Chem., 176, 675, 10.1016/j.snb.2012.09.094

Yuan, 2020, Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing, J. Colloid Interface Sci., 568, 81, 10.1016/j.jcis.2020.02.042

Yin, 2018, WO3 -SnO2 nanosheet composites: hydrothermal synthesis and gas sensing mechanism, J. Alloys Compd., 736, 322, 10.1016/j.jallcom.2017.11.185

Zhu, 2019, High-performance gas sensors based on the WO3-SnO2 nanosphere composites, J. Alloys Compd., 782, 789, 10.1016/j.jallcom.2018.12.178

Zhang, 2020, Nanoscale Pd catalysts decorated WO3–SnO2 heterojunction nanotubes for highly sensitive and selective acetone sensing, Sens. Actuators B Chem., 306, 127575, 10.1016/j.snb.2019.127575

Nayak, 2015, Hierarchical nanostructured WO3–SnO2 for selective sensing of volatile organic compounds, Nanoscale, 7, 12460, 10.1039/C5NR02571K

Gui, 2013, Preparation and gas sensitivity of WO3 hollow microspheres and SnO2 doped heterojunction sensors, Mater. Sci. Semicond. Process., 16, 1531, 10.1016/j.mssp.2013.05.012

Van Hieu, 2008, Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite, Sens. Actuators B Chem., 129, 888, 10.1016/j.snb.2007.09.088

Trung, 2012, Synthesis of single-crystal SnO2 nanowires for NOx gas sensors application, Ceram. Int., 38, 6557, 10.1016/j.ceramint.2012.05.039

Huo, 2019, Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance, J. Mater. Chem. A, 7, 16867, 10.1039/C9TA03725J

Xue, 2019, Enhanced methane sensing properties of WO3 nanosheets with dominant exposed (200) facet via loading of SnO2 nanoparticles, Nanomaterials, 9, 351, 10.3390/nano9030351