WO3 nanotubes−SnO2 nanoparticles heterointerfaces for ultrasensitive and selective NO2 detections
Tài liệu tham khảo
Cheng, 2016, A review of recent developments in tin dioxide composites for gas sensing application, J. Ind. Eng. Chem., 44, 1, 10.1016/j.jiec.2016.08.008
Maksimov, 2000, Synthesis and study of acid catalyst 30% WO3/SnO2, J. Mol. Catal. A Chem., 158, 435, 10.1016/S1381-1169(00)00119-9
Alaya, 2013, Surface acidity and catalytic activity of aged SO42-/SnO2 catalyst supported with WO3, J. Alloys Compd., 575, 285, 10.1016/j.jallcom.2013.05.145
Liu, 2017, Synthesis of porous SnO2 hexagon nanosheets loaded with Au nanoparticles for high performance gas sensors, Mater. Lett., 201, 211, 10.1016/j.matlet.2017.05.024
Guo, 2016, Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor, Sens. Actuators B Chem., 226, 266, 10.1016/j.snb.2015.11.140
Kolhe, 2017, Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties, Phys. B Condens. Matter, 524, 90, 10.1016/j.physb.2017.07.056
Liu, 2017, Pt nanoparticles functionalized 3D SnO2 nanoflowers for gas sensor application, Solid. State. Electron., 130, 20, 10.1016/j.sse.2017.01.005
Li, 2017, Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances, J. Alloys Compd., 710, 216, 10.1016/j.jallcom.2017.03.274
Urasinska-Wojcik, 2017, Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment, Sens. Actuators B Chem., 239, 1051, 10.1016/j.snb.2016.08.080
Shendage, 2017, Sensitive and selective NO2 gas sensor based on WO3 nanoplates, Sens. Actuators B Chem., 240, 426, 10.1016/j.snb.2016.08.177
Boudiba, 2012, Hydrothermal synthesis of two dimensional WO3 nanostructures for NO2 detection in the ppb-level, Procedia Eng., 47, 228, 10.1016/j.proeng.2012.09.125
Zhang, 2012, Visible light activated tungsten oxide sensors for NO2 detection at room temperature, Procedia Eng., 47, 116, 10.1016/j.proeng.2012.09.098
Shendage, 2017, NO2 sensing properties of porous fibrous reticulated WO3 thin films, J. Anal. Appl. Pyrolysis, 125, 9, 10.1016/j.jaap.2017.05.006
Yun, 2016, Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting, J. Phys. Chem. C, 120, 5906, 10.1021/acs.jpcc.6b00044
Xue, 2011, SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes, Nanotechnol, 22, 10.1088/0957-4484/22/39/395702
Kaur, 2007, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature, Sens. Actuators B Chem., 123, 1090, 10.1016/j.snb.2006.11.031
Shimanoe, 2009, Microstructure control of WO3 film by adding nano-particles of SnO2 for NO2 detection in ppb level, Procedia Chem., 1, 212, 10.1016/j.proche.2009.07.053
Bai, 2010, Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2, Sens. Actuators B Chem., 150, 749, 10.1016/j.snb.2010.08.007
Dhannasare, 2012, Application of nanosize polycrystalline SnO2-WO3 solid material as CO2 gas sensor, Rev. Mex. Fisica., 58, 445
Gui, 2013, Preparation and gas sensitivity of WO3 hollow microspheres and SnO2 doped heterojunction sensors, Mater. Sci. Semicond. Process, 16, 1531, 10.1016/j.mssp.2013.05.012
Sharma, 2013, Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters, Sens. Actuators B Chem., 181, 735, 10.1016/j.snb.2013.01.074
Li, 2015, Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration, Sens. Actuators B Chem., 220, 398, 10.1016/j.snb.2015.05.091
Najim, 2016, Room temperature NO2 gas sensor based on SnO2-WO3 thin films, Plasmonics, 12, 1051, 10.1007/s11468-016-0358-3
Tomer, 2016, Highly sensitive and selective volatile organic amine (VOA) sensors using mesoporous WO3–SnO2 nanohybrids, Sens. Actuators B Chem., 229, 321, 10.1016/j.snb.2016.01.124
Van Toan, 2017, Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance, Mater. Sci. Eng. B., 224, 163, 10.1016/j.mseb.2017.08.004
Zhang, 2017, H2 response characteristics for sol–gel-derived WO3-SnO2 dual-layer thin films, Ceram. Int., 43, 6693, 10.1016/j.ceramint.2017.02.065
Tomer, 2017, Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor, Sens. Actuators B Chem., 253, 703, 10.1016/j.snb.2017.06.179
Choi, 2008, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity, Nanotechnol., 19, 95508, 10.1088/0957-4484/19/9/095508
Zhang, 2009, NO2 sensing performance of SnO2 hollow-sphere sensor, Sens. Actuators B Chem., 135, 610, 10.1016/j.snb.2008.09.026
Cho, 2011, Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors, Sens. Actuators B Chem., 160, 1468, 10.1016/j.snb.2011.07.035
Zeng, 2012, NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film, Sens. Actuators B Chem., 161, 447, 10.1016/j.snb.2011.10.059
An, 2014, Fabrication of WO3 nanotube sensors and their gas sensing properties, Ceram. Int., 40, 1423, 10.1016/j.ceramint.2013.07.025
Srivastava, 2016, At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor, Mater. Lett., 169, 28, 10.1016/j.matlet.2015.12.115
Zhang, 2016, Nitrogen dioxide-sensing properties at room temperatureof metal oxide-modified graphene composite via one-step hydrothermal method, J. Electron. Mater., 45, 4324, 10.1007/s11664-016-4600-8
Gu, 2017, Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor, Sens. Actuators B Chem., 244, 67, 10.1016/j.snb.2016.12.125
Pan, 2017, A high-integration sensor array sensitive to oxynitride mixture, Sens. Actuators B Chem., 245, 183, 10.1016/j.snb.2017.01.115
Wetchakun, 2011, Semiconducting metal oxides as sensors for environmentally hazardous gases, Sens. Actuators, B Chem., 160, 580, 10.1016/j.snb.2011.08.032
Luo, 2017, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review, Int. J. Hydrogen Energy, 42, 20386, 10.1016/j.ijhydene.2017.06.066
Patil, 2017, Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: an experimental approach, Appl. Surf. Sci., 423, 641, 10.1016/j.apsusc.2017.06.116
Sukunta, 2017, Highly-sensitive H2S sensors based on flame-made V-substituted SnO2 sensing films, Sens. Actuators, B Chem., 242, 1095, 10.1016/j.snb.2016.09.140
Tammanoon, 2015, Ultrasensitive NO2 sensor based on ohmic metal-semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures, ACS Appl. Mater. Interfaces., 7, 24338, 10.1021/acsami.5b09067
Punginsang, 2015, Effects of cobalt doping on nitric oxide, acetone and ethanol sensing performances of FSP-made SnO2 nanoparticles, Sens. Actuators, B Chem., 210, 589, 10.1016/j.snb.2015.01.028
Liewhiran, 2013, Ultra-sensitive H2 sensors based on flame-spray-made Pd-loaded SnO2 sensing films, Sens. Actuators, B Chem., 176, 893, 10.1016/j.snb.2012.10.087
Liewhiran, 2012, Highly selective environmental sensors based on flame-spray-made SnO2 nanoparticles, Sens. Actuators B Chem., 163, 51, 10.1016/j.snb.2011.12.097
Perrozzi, 2017, Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2, Sens. Actuators B Chem., 243, 812, 10.1016/j.snb.2016.12.069
Vattikuti, 2016, Preparation and improved photocatalytic activity of mesoporous WS2 using combined hydrothermal-evaporation induced self-assembly method, Mater. Res. Bull., 75, 193, 10.1016/j.materresbull.2015.11.059
Li, 2006, Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes, J. Phys. Chem. B., 110, 18191, 10.1021/jp062427j
Sarkar, 2010, Investigation of the catalytic efficiency of a new mesoporous catalyst SnO2/WO3 towards oleic acid esterification, J. Mol. Catal. A Chem., 327, 73, 10.1016/j.molcata.2010.05.015
Kwoka, 2011, X-ray photoelectron spectroscopy and thermal desorption spectroscopy comparative studies of L-CVD SnO2 ultra thin films, Thin Solid Films, 520, 913, 10.1016/j.tsf.2011.04.185
Wagner, 1979, 118
Shpak, 2010, XPS studies of the surface of nanocrystalline tungsten disulfide, J. Electron Spectros. Relat. Phenomena., 181, 234, 10.1016/j.elspec.2010.05.030
Martin-Litas, 2002, Characterisation of r.f. sputtered tungsten disulfide and oxysulfide thin films, Thin Solid Films, 416, 1, 10.1016/S0040-6090(02)00717-4
Long, 2017, Hierarchically solvothermal synthesis of WO3-based nanocomposite: nature-inspired structure and enhanced gas-sensing property, Phys. E Low-Dimensional Syst. Nanostruct., 88, 206, 10.1016/j.physe.2017.01.013
Wang, 2017, Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for highly sensitive hydrogen detection, Sens. Actuators B Chem., 240, 664, 10.1016/j.snb.2016.09.024
Mazloom, 2015, Synthesis and characterization of vanadium doped SnO2 diluted magnetic semiconductor nanoparticles with enhanced photocatalytic activities, J. Alloys Compd., 639, 393, 10.1016/j.jallcom.2015.03.184
Gürbüz, 2014, LPG sensing characteristics of electrospray deposited SnO2 nanoparticles, Appl. Surf. Sci., 318, 334, 10.1016/j.apsusc.2014.09.185
Rosentsveig, 2002, Bundles and foils of WS2 nanotubes, Appl. Phys. A Mater. Sci. Process., 74, 367, 10.1007/s003390201282
Sing, 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57, 603, 10.1351/pac198557040603
Korotcenkov, 2013, The role of doping effect on the response of SnO2-based thin film gas sensors: analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis, Sens. Actuators B Chem., 182, 112, 10.1016/j.snb.2013.02.103
Brankovic, 2004, Influence of the common varistor dopants (CoO, Cr2O3 and Nb2O5) on the structural properties of SnO2 ceramics, Mater. Charact., 52, 243, 10.1016/j.matchar.2002.11.001
Yamazoe, 2008, Theory of power laws for semiconductor gas sensors, Sens. Actuators B Chem., 128, 566, 10.1016/j.snb.2007.07.036
Chang, 1979, Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements, J. Vac. Sci. Technol., 17, 366, 10.1116/1.570389
Chen, 2007, Atomic and molecular chemisorption of oxygen in WO4 clusters, Chin. J. Chem. Phys., 20, 78, 10.1360/cjcp2007.20(1).78.5
Wang, 2011, Electronic and structural properties of WO3: a systematic hybrid DFT study, J. Phys. Chem. C, 115, 8345, 10.1021/jp201057m
Walter, 1991, Photodetachment of WO3-: the electron affinity of WO3, J. Chem. Phys., 95, 824, 10.1063/1.461089
Floriano, 2014, Preparation of TiO2/SnO2 thin films by sol-gel method and periodic B3LYP simulations, J. Phys. Chem. A, 118, 5857, 10.1021/jp411764t
Anisimov, 2010, Effect of gold on the properties of nitrogen dioxide sensors based on thin WO3 films, Semiconductors, 44, 366, 10.1134/S1063782610030164