WO3 nanotubes−SnO2 nanoparticles heterointerfaces for ultrasensitive and selective NO2 detections

Applied Surface Science - Tập 458 - Trang 319-332 - 2018
Jirasak Sukunta1,2, Anurat Wisitsoraat3,4,5, Adisorn Tuantranont3,6, Sukon Phanichphant3, Chaikarn Liewhiran1,3,7
1Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
2Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
3Center of Advanced Materials for Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
4Carbon-based Devices and Nanoelectronics Laboratory, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand
5Department of Common and Graduate Studies, Sirindhorn International Institute of Technology, Thammasat University, Pathumthani 12120, Thailand
6Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand
7Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand

Tài liệu tham khảo

Cheng, 2016, A review of recent developments in tin dioxide composites for gas sensing application, J. Ind. Eng. Chem., 44, 1, 10.1016/j.jiec.2016.08.008 Maksimov, 2000, Synthesis and study of acid catalyst 30% WO3/SnO2, J. Mol. Catal. A Chem., 158, 435, 10.1016/S1381-1169(00)00119-9 Alaya, 2013, Surface acidity and catalytic activity of aged SO42-/SnO2 catalyst supported with WO3, J. Alloys Compd., 575, 285, 10.1016/j.jallcom.2013.05.145 Liu, 2017, Synthesis of porous SnO2 hexagon nanosheets loaded with Au nanoparticles for high performance gas sensors, Mater. Lett., 201, 211, 10.1016/j.matlet.2017.05.024 Guo, 2016, Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor, Sens. Actuators B Chem., 226, 266, 10.1016/j.snb.2015.11.140 Kolhe, 2017, Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties, Phys. B Condens. Matter, 524, 90, 10.1016/j.physb.2017.07.056 Liu, 2017, Pt nanoparticles functionalized 3D SnO2 nanoflowers for gas sensor application, Solid. State. Electron., 130, 20, 10.1016/j.sse.2017.01.005 Li, 2017, Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances, J. Alloys Compd., 710, 216, 10.1016/j.jallcom.2017.03.274 Urasinska-Wojcik, 2017, Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment, Sens. Actuators B Chem., 239, 1051, 10.1016/j.snb.2016.08.080 Shendage, 2017, Sensitive and selective NO2 gas sensor based on WO3 nanoplates, Sens. Actuators B Chem., 240, 426, 10.1016/j.snb.2016.08.177 Boudiba, 2012, Hydrothermal synthesis of two dimensional WO3 nanostructures for NO2 detection in the ppb-level, Procedia Eng., 47, 228, 10.1016/j.proeng.2012.09.125 Zhang, 2012, Visible light activated tungsten oxide sensors for NO2 detection at room temperature, Procedia Eng., 47, 116, 10.1016/j.proeng.2012.09.098 Shendage, 2017, NO2 sensing properties of porous fibrous reticulated WO3 thin films, J. Anal. Appl. Pyrolysis, 125, 9, 10.1016/j.jaap.2017.05.006 Yun, 2016, Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting, J. Phys. Chem. C, 120, 5906, 10.1021/acs.jpcc.6b00044 Xue, 2011, SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes, Nanotechnol, 22, 10.1088/0957-4484/22/39/395702 Kaur, 2007, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature, Sens. Actuators B Chem., 123, 1090, 10.1016/j.snb.2006.11.031 Shimanoe, 2009, Microstructure control of WO3 film by adding nano-particles of SnO2 for NO2 detection in ppb level, Procedia Chem., 1, 212, 10.1016/j.proche.2009.07.053 Bai, 2010, Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2, Sens. Actuators B Chem., 150, 749, 10.1016/j.snb.2010.08.007 Dhannasare, 2012, Application of nanosize polycrystalline SnO2-WO3 solid material as CO2 gas sensor, Rev. Mex. Fisica., 58, 445 Gui, 2013, Preparation and gas sensitivity of WO3 hollow microspheres and SnO2 doped heterojunction sensors, Mater. Sci. Semicond. Process, 16, 1531, 10.1016/j.mssp.2013.05.012 Sharma, 2013, Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters, Sens. Actuators B Chem., 181, 735, 10.1016/j.snb.2013.01.074 Li, 2015, Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration, Sens. Actuators B Chem., 220, 398, 10.1016/j.snb.2015.05.091 Najim, 2016, Room temperature NO2 gas sensor based on SnO2-WO3 thin films, Plasmonics, 12, 1051, 10.1007/s11468-016-0358-3 Tomer, 2016, Highly sensitive and selective volatile organic amine (VOA) sensors using mesoporous WO3–SnO2 nanohybrids, Sens. Actuators B Chem., 229, 321, 10.1016/j.snb.2016.01.124 Van Toan, 2017, Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance, Mater. Sci. Eng. B., 224, 163, 10.1016/j.mseb.2017.08.004 Zhang, 2017, H2 response characteristics for sol–gel-derived WO3-SnO2 dual-layer thin films, Ceram. Int., 43, 6693, 10.1016/j.ceramint.2017.02.065 Tomer, 2017, Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor, Sens. Actuators B Chem., 253, 703, 10.1016/j.snb.2017.06.179 Choi, 2008, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity, Nanotechnol., 19, 95508, 10.1088/0957-4484/19/9/095508 Zhang, 2009, NO2 sensing performance of SnO2 hollow-sphere sensor, Sens. Actuators B Chem., 135, 610, 10.1016/j.snb.2008.09.026 Cho, 2011, Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors, Sens. Actuators B Chem., 160, 1468, 10.1016/j.snb.2011.07.035 Zeng, 2012, NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film, Sens. Actuators B Chem., 161, 447, 10.1016/j.snb.2011.10.059 An, 2014, Fabrication of WO3 nanotube sensors and their gas sensing properties, Ceram. Int., 40, 1423, 10.1016/j.ceramint.2013.07.025 Srivastava, 2016, At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor, Mater. Lett., 169, 28, 10.1016/j.matlet.2015.12.115 Zhang, 2016, Nitrogen dioxide-sensing properties at room temperatureof metal oxide-modified graphene composite via one-step hydrothermal method, J. Electron. Mater., 45, 4324, 10.1007/s11664-016-4600-8 Gu, 2017, Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor, Sens. Actuators B Chem., 244, 67, 10.1016/j.snb.2016.12.125 Pan, 2017, A high-integration sensor array sensitive to oxynitride mixture, Sens. Actuators B Chem., 245, 183, 10.1016/j.snb.2017.01.115 Wetchakun, 2011, Semiconducting metal oxides as sensors for environmentally hazardous gases, Sens. Actuators, B Chem., 160, 580, 10.1016/j.snb.2011.08.032 Luo, 2017, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review, Int. J. Hydrogen Energy, 42, 20386, 10.1016/j.ijhydene.2017.06.066 Patil, 2017, Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: an experimental approach, Appl. Surf. Sci., 423, 641, 10.1016/j.apsusc.2017.06.116 Sukunta, 2017, Highly-sensitive H2S sensors based on flame-made V-substituted SnO2 sensing films, Sens. Actuators, B Chem., 242, 1095, 10.1016/j.snb.2016.09.140 Tammanoon, 2015, Ultrasensitive NO2 sensor based on ohmic metal-semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures, ACS Appl. Mater. Interfaces., 7, 24338, 10.1021/acsami.5b09067 Punginsang, 2015, Effects of cobalt doping on nitric oxide, acetone and ethanol sensing performances of FSP-made SnO2 nanoparticles, Sens. Actuators, B Chem., 210, 589, 10.1016/j.snb.2015.01.028 Liewhiran, 2013, Ultra-sensitive H2 sensors based on flame-spray-made Pd-loaded SnO2 sensing films, Sens. Actuators, B Chem., 176, 893, 10.1016/j.snb.2012.10.087 Liewhiran, 2012, Highly selective environmental sensors based on flame-spray-made SnO2 nanoparticles, Sens. Actuators B Chem., 163, 51, 10.1016/j.snb.2011.12.097 Perrozzi, 2017, Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2, Sens. Actuators B Chem., 243, 812, 10.1016/j.snb.2016.12.069 Vattikuti, 2016, Preparation and improved photocatalytic activity of mesoporous WS2 using combined hydrothermal-evaporation induced self-assembly method, Mater. Res. Bull., 75, 193, 10.1016/j.materresbull.2015.11.059 Li, 2006, Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes, J. Phys. Chem. B., 110, 18191, 10.1021/jp062427j Sarkar, 2010, Investigation of the catalytic efficiency of a new mesoporous catalyst SnO2/WO3 towards oleic acid esterification, J. Mol. Catal. A Chem., 327, 73, 10.1016/j.molcata.2010.05.015 Kwoka, 2011, X-ray photoelectron spectroscopy and thermal desorption spectroscopy comparative studies of L-CVD SnO2 ultra thin films, Thin Solid Films, 520, 913, 10.1016/j.tsf.2011.04.185 Wagner, 1979, 118 Shpak, 2010, XPS studies of the surface of nanocrystalline tungsten disulfide, J. Electron Spectros. Relat. Phenomena., 181, 234, 10.1016/j.elspec.2010.05.030 Martin-Litas, 2002, Characterisation of r.f. sputtered tungsten disulfide and oxysulfide thin films, Thin Solid Films, 416, 1, 10.1016/S0040-6090(02)00717-4 Long, 2017, Hierarchically solvothermal synthesis of WO3-based nanocomposite: nature-inspired structure and enhanced gas-sensing property, Phys. E Low-Dimensional Syst. Nanostruct., 88, 206, 10.1016/j.physe.2017.01.013 Wang, 2017, Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for highly sensitive hydrogen detection, Sens. Actuators B Chem., 240, 664, 10.1016/j.snb.2016.09.024 Mazloom, 2015, Synthesis and characterization of vanadium doped SnO2 diluted magnetic semiconductor nanoparticles with enhanced photocatalytic activities, J. Alloys Compd., 639, 393, 10.1016/j.jallcom.2015.03.184 Gürbüz, 2014, LPG sensing characteristics of electrospray deposited SnO2 nanoparticles, Appl. Surf. Sci., 318, 334, 10.1016/j.apsusc.2014.09.185 Rosentsveig, 2002, Bundles and foils of WS2 nanotubes, Appl. Phys. A Mater. Sci. Process., 74, 367, 10.1007/s003390201282 Sing, 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57, 603, 10.1351/pac198557040603 Korotcenkov, 2013, The role of doping effect on the response of SnO2-based thin film gas sensors: analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis, Sens. Actuators B Chem., 182, 112, 10.1016/j.snb.2013.02.103 Brankovic, 2004, Influence of the common varistor dopants (CoO, Cr2O3 and Nb2O5) on the structural properties of SnO2 ceramics, Mater. Charact., 52, 243, 10.1016/j.matchar.2002.11.001 Yamazoe, 2008, Theory of power laws for semiconductor gas sensors, Sens. Actuators B Chem., 128, 566, 10.1016/j.snb.2007.07.036 Chang, 1979, Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements, J. Vac. Sci. Technol., 17, 366, 10.1116/1.570389 Chen, 2007, Atomic and molecular chemisorption of oxygen in WO4 clusters, Chin. J. Chem. Phys., 20, 78, 10.1360/cjcp2007.20(1).78.5 Wang, 2011, Electronic and structural properties of WO3: a systematic hybrid DFT study, J. Phys. Chem. C, 115, 8345, 10.1021/jp201057m Walter, 1991, Photodetachment of WO3-: the electron affinity of WO3, J. Chem. Phys., 95, 824, 10.1063/1.461089 Floriano, 2014, Preparation of TiO2/SnO2 thin films by sol-gel method and periodic B3LYP simulations, J. Phys. Chem. A, 118, 5857, 10.1021/jp411764t Anisimov, 2010, Effect of gold on the properties of nitrogen dioxide sensors based on thin WO3 films, Semiconductors, 44, 366, 10.1134/S1063782610030164