Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts

Current Applied Physics - Tập 12 - Trang 1125-1130 - 2012
Hyunsu Kim1, Soyeon An1, Changhyun Jin1, Chongmu Lee1
1Department of Materials Science and Engineering, Inha University, Yonghyundong, Nam-gu, Incheon 402-751, Republic of Korea

Tài liệu tham khảo

Xu, 2002, Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor, Scr. Mater., 46, 789, 10.1016/S1359-6462(02)00077-5 Dai, 2002, Tin oxide nanowires, nanoribbons, and nanotubes, J. Phys. Chem. B, 106, 1274, 10.1021/jp013214r Zanotti, 2005, Growth of tin oxide nanocrystals, Crystal Res. Technol., 40, 932, 10.1002/crat.200410462 Park, 2009, Growth of SnO2 nanowires by thermal evaporation on Au-coated Si substrates, Curr. Appl. Phys., 9, S230, 10.1016/j.cap.2009.01.049 Wang, 2005, Growth and photoluminescence of SnO2 nanostructures synthesized by Au-Aug alloying catalyst assisted carbothermal evaporation, Chem. Phys. Lett., 407, 347, 10.1016/j.cplett.2005.03.119 Liu, 2001, Production of SnO2 nanorods by redox reaction, J. Crystal Growth, 233, 8, 10.1016/S0022-0248(01)01531-7 Hu, 2003, Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons, Adv. Funct. Mater., 13, 493, 10.1002/adfm.200304327 Ma, 2003, Growth mode of the SnO2 nanobelts synthesized by rapid oxidation, Chem. Phys. Lett., 376, 794, 10.1016/S0009-2614(03)01081-9 Liu, 2001, Synthesis and characterization of Rutile SnO2 nanorods, Adv. Mater., 13, 1883, 10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-Q Limmer, 2002, Template-based growth of various oxide nanorods by sol–gel electrophoresis, Adv. Funct. Mater., 12, 59, 10.1002/1616-3028(20020101)12:1<59::AID-ADFM59>3.0.CO;2-B Talledo, 1995, Electrochromic vanadium-pentoxide-based films: structural, electrochemical, and optical properties, J. Appl. Phys., 77, 4655, 10.1063/1.359433 Poizot, 2000, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496, 10.1038/35035045 Fleischer, 1998, Selectivity in high-temperature operated semiconductor gas-sensors, Sens. Actuators B, 52, 179, 10.1016/S0925-4005(98)00271-8 Xia, 2003, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 15, 353, 10.1002/adma.200390087 Choi, 2009, Synthesis of SnO2-ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties, Nanotechnology, 20, 465603, 10.1088/0957-4484/20/46/465603 Zhang, 2004, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett., 4, 1919, 10.1021/nl0489283 Xu, 2008, High aspect ratio In2O3 nanowires synthesis, mechanism and NO2 gas-sensing properties, Sens. Actuators B, 130, 802, 10.1016/j.snb.2007.10.044 Ramgir, 2005, A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires, Sens. Actuators B, 107, 708, 10.1016/j.snb.2004.12.073 Cao, 2009, Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection, J. Mater. Chem., 19, 2323, 10.1039/b816646c Oh, 2009, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation, Sens. Actuators B, 141, 239, 10.1016/j.snb.2009.06.031 Chen, 2008, Synthesis of ZnO-SnO2 nanocomposites by microemulsion and sensing properties for NO2, Sens. Actuators B, 134, 360, 10.1016/j.snb.2008.04.040 Zhu, 2004, Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2, Mater. Lett., 58, 624, 10.1016/S0167-577X(03)00582-2 Hoefer, 2001, High temperature Ga2O3-gas sensors and SnO2-gas sensors a comparison, Sens. Actuators B, 78, 6, 10.1016/S0925-4005(01)00784-5 Schierbaum, 1991, Conductance, work function and catalytic activity of SnO2-based gas, Sens. Actautors B, 3, 205, 10.1016/0925-4005(91)80007-7 Safonova, 2002, CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru Rh, Mater. Sci. Eng. C, 21, 105, 10.1016/S0928-4931(02)00068-1 Ogawa, 1982, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films, J. Appl. Phys., 53, 4448, 10.1063/1.331230 Barsan, 2001, Conduction model of metal oxide gas sensors, Electroceramics, 7, 143, 10.1023/A:1014405811371 Weis, 2002, Barrier-controlled carrier transport in microcrystalline semiconducting materials: description within a unified model, J. Appl. Phys., 92, 1411, 10.1063/1.1488246