Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances

Journal of Hazardous Materials - Tập 357 - Trang 314-331 - 2018
Ali Mirzaei1,2, Sang Sub Kim3, Hyoun Woo Kim1,4
1The Research Institute of Industrial Science, Hanyang University, Seoul, 133-791, Republic of Korea
2Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
3Department of Materials Science and Engineering, Inha University, Incheon 402-751, Republic of Korea
4Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea

Tài liệu tham khảo

Pifferi, 2011, Odorant detection and discrimination in the olfactory system, Sens. Microsyst. Lect. Notes Electr. Eng., 91, 3, 10.1007/978-94-007-1324-6_1 Chiu, 2013, Towards a chemiresistive sensor-integrated electronic nose: a review, Sensors, 13, 14214, 10.3390/s131014214 Rouby, 2002 Mirzaei, 2016, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review, Ceram. Int., 42, 15119, 10.1016/j.ceramint.2016.06.145 Xiao, 2001, Denaturing high-performance liquid chromatography: a review, Hum. Mutat., 17, 439, 10.1002/humu.1130 Cortes, 2009, Comprehensive two dimensional gas chromatography review, J. Sep. Sci., 32, 883, 10.1002/jssc.200800654 Haddad, 2008, Recent developments and emerging directions in ion chromatography, J. Chromatogr. A, 1184, 456, 10.1016/j.chroma.2007.10.022 Khanna, 2012 Mirzaei, 2016, α-Fe2O3 based nanomaterials as gas sensors, J. Mater. Sci. Mater. Electron., 27, 3109, 10.1007/s10854-015-4200-z Mirzaei, 2016, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review, Sens. Actuators B Chem., 237, 749, 10.1016/j.snb.2016.06.114 Hodgkinson, 2012, Optical gas sensing: a review, Meas. Sci. Technol., 24 Sepaniak, 2002, Peer reviewed: microcantilever transducers: a new approach in sensor technology, Anal. Chem. A, 74, 568, 10.1021/ac022156i Homola, 1999, Surface plasmon resonance sensors: review, Sens. Actuators B Chem., 54, 3, 10.1016/S0925-4005(98)00321-9 Azad, 1992, Solid-state gas sensors: a review, J. Electrochem. Soc., 139, 3690, 10.1149/1.2069145 Länge, 2008, Surface acoustic wave biosensors: a review, Anal. Bioanal. Chem., 391, 1509, 10.1007/s00216-008-1911-5 Barochi, 2011, Development of microwave gas sensors, Sens. Actuators B Chem., 157, 374, 10.1016/j.snb.2011.04.059 Mirzaei, 2016, CO gas sensing properties of In4Sn3O12 and TeO2 composite nanoparticle sensors, J. Hazard. Mater., 305, 130, 10.1016/j.jhazmat.2015.11.044 Mirzaei, 2015, Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review, J. Nanopart. Res., 17, 1, 10.1007/s11051-015-3164-5 Balouria, 2013, Nano-crystalline Fe2O3 thin films for ppm level detection of H2S, Sens. Actuators B Chem., 181, 471, 10.1016/j.snb.2013.02.013 Zhu, 2014, A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature, Appl. Surf. Sci., 320, 348, 10.1016/j.apsusc.2014.09.108 Raut, 2012, Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection, Measurement, 45, 94, 10.1016/j.measurement.2011.09.015 Moon, 2016, Co3O4–SWCNT composites for H2S gas sensor application, Sens. Actuators B Chem., 222, 166, 10.1016/j.snb.2015.08.072 Choi, 2018, Dual sensitization of MWCNTs by co-decoration with p-and n-type metal oxide nanoparticles, Sens. Actuators B Chem., 264, 150, 10.1016/j.snb.2018.02.179 Kim, 2017, Synthesis and selective sensing properties of rGO/metal-coloaded SnO2 nanofibers, J. Electr. Mater., 46, 3531, 10.1007/s11664-017-5301-7 Guo, 2016, Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor, Sens. Actuators B Chem., 226, 266, 10.1016/j.snb.2015.11.140 Shewale, 2015, H2S gas sensitive Sn-doped ZnO thin films: synthesis and characterization, J. Anal. Appl. Pyrol., 112, 348, 10.1016/j.jaap.2015.01.001 Wang, 2015, Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors, Sens. Actuators B Chem., 209, 515, 10.1016/j.snb.2014.12.010 Diao, 2015, High response to H2S gas with facile synthesized hierarchical ZnO microstructures, Sens. Actuators B Chem., 219, 30, 10.1016/j.snb.2015.04.116 Mirzaei, 2016, Fe2O3/Co3O4 composite nanoparticle ethanol sensor, J. Korean Phys. Soc., 69, 373, 10.3938/jkps.69.373 Lee, 2009, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B Chem., 140, 319, 10.1016/j.snb.2009.04.026 Cadena, 2007, Gas sensors based on nanostructured materials, Analyst, 132, 1083, 10.1039/b704562j Yamazoe, 1991, New approaches for improving semiconductor gas sensors, Sens. Actuators B Chem., 5, 7, 10.1016/0925-4005(91)80213-4 Korotcenkov, 2007, Metal oxides for solid-state gas sensors: what determines our choice?, Mater. Sci. Eng. B, 139, 1, 10.1016/j.mseb.2007.01.044 Zoolfakar, 2013, Nanostructured copper oxides as ethanol vapour sensors, Sens. Actuators B Chem., 185, 620, 10.1016/j.snb.2013.05.042 Yamazoe, 2003, Oxide semiconductor gas sensor, Catal. Surv. Asia, 7, 63, 10.1023/A:1023436725457 Kim, 2014, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview, Sens. Actuators B Chem., 192, 607, 10.1016/j.snb.2013.11.005 Xia, 2013, Ceria modified crystalline mesoporous Cr2O3 based nanocomposites supported metal oxide for benzene complete oxidation, Catal. Commun., 41, 91, 10.1016/j.catcom.2013.07.008 Xu, 2016, The advances of Co3O4 as gas sensing materials: a review, J. Alloys Compd., 686, 753, 10.1016/j.jallcom.2016.06.086 Lu, 2016, Synthesis of cactus-like NiO nanostructure and their gas-sensing properties, Mater. Lett., 164, 48, 10.1016/j.matlet.2015.10.117 Zhang, 2006, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors, Chem. Mater., 18, 867, 10.1021/cm052256f Fu, 2007, Sensing properties and mechanism of gas sensor for H2S and NO2 based on [Cu5(bipyO2)6Cl8]Cl2, Sens. Actuators B Chem., 123, 1113, 10.1016/j.snb.2006.11.028 Fu, 2013, Sensing behavior of CdS nanoparticles to SO2, H2S and NH3 at room temperature, Mater. Res. Bull., 48, 1784, 10.1016/j.materresbull.2013.01.037 Merdrignac-Conanec, 2000, Humidity effect on baseline conductance and H2S sensitivity of cadmium germanium oxynitride thick film gas sensors, Sens. Actuators B Chem., 63, 86, 10.1016/S0925-4005(00)00302-6 Sarfraza, 2014, A printed H2S sensor with electro-optical response, Sens. Actuators B Chem., 191, 821, 10.1016/j.snb.2013.10.011 Mohammadzadeha, 2012, Preparation of nanosensors based on organic functionalized MWCNT for H2S detection, Appl. Surf. Sci., 259, 159, 10.1016/j.apsusc.2012.07.011 Dilonardo, 2016, Electrophoretic deposition of AuNPs on MWCNT-based gas sensor for tailored gas detection with enhanced sensing properties, Sens. Actuators B Chem., 223, 417, 10.1016/j.snb.2015.09.112 Zhao, 2016, Highly sensitive H2S sensors based on ultrathin organic single-crystal microplate transistors, Org. Electron., 32, 94, 10.1016/j.orgel.2016.02.019 Lee, 2011, Selective and rapid room temperature detection of H2S using gold nanoparticle chain arrays, Electroanalysis, 23, 2623, 10.1002/elan.201100295 Joshia, 2014, Flexible H2S sensor based on gold modified polycarbazole films, Sens. Actuators B Chem., 200, 227, 10.1016/j.snb.2014.04.041 Pandey, 2012, A review of sensor-based methods for monitoring hydrogen sulfide, TrAC Trends Anal. Chem., 32, 87, 10.1016/j.trac.2011.08.008 Guo, 2015, Metal oxides and metal salt nanostructures for hydrogen sulfide sensing: mechanism and sensing performance, RSC Adv., 5, 54793, 10.1039/C5RA10394K Patil, 2015, Semiconductor metal oxide compounds based gas sensors: a literature review, Front. Mater. Sci., 9, 14, 10.1007/s11706-015-0279-7 Llobet, 2017, Nanomaterials for the selective detection of hydrogen sulfide in air, Sensors, 17, 391, 10.3390/s17020391 Kim, 2012, H2S gas sensing properties of bare and Pd-functionalized CuO nanorods, Sens. Actuators B Chem., 161, 594, 10.1016/j.snb.2011.11.006 Mortezaali, 2014, The correlation between the substrate temperature andmorphological ZnO nanostructures for H2S gas sensors, Sens. Actuators A Phys., 206, 30, 10.1016/j.sna.2013.11.027 Shewale, 2013, Influence of substrate temperature on H2S gas sensing properties of nanocrystalline zinc oxide thin films prepared by advanced spray pyrolysis, Sens. J. IEEE, 13, 1992, 10.1109/JSEN.2013.2246760 Shinde, 2012, Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor, J. Alloys Compd., 528, 109, 10.1016/j.jallcom.2012.03.020 Ionescu, 2005, Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors, Sens. Actuators B Chem., 104, 132, 10.1016/j.snb.2004.05.015 Chen, 2013, Sonochemical synthesis and ppb H2S sensing performances of CuO nanobelts, Sens. Actuators B Chem., 176, 15, 10.1016/j.snb.2012.08.007 Steinhauer, 2013, Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere, Sens. Actuators B Chem., 186, 550, 10.1016/j.snb.2013.06.044 Tamaki, 1998, Dilute hydrogen sulphide sensing properties of CuO-SnO2 thin film prepared by lowpressure evaporation method, Sens. Actuators B Chem., 49, 121, 10.1016/S0925-4005(98)00144-0 Zhang, 2008, Room-temperature high sensitivity H2S gas sensor based on dendritic ZnO nanostructure with macroscale in appearance, J. Appl. Phys., 103, 104305, 10.1063/1.2924430 Bai, 2015, Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances, Sens. Actuators B Chem., 216, 113, 10.1016/j.snb.2015.04.036 Shi, 2016, Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties, Sens. Actuators B Chem., 230, 736, 10.1016/j.snb.2016.02.134 Wang, 2006, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sens. Actuators B Chem., 113, 320, 10.1016/j.snb.2005.03.011 Kim, 2014, Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer, Sens. Actuators B Chem., 193, 574, 10.1016/j.snb.2013.12.011 Hosseinia, 2015, Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures, Sens. Actuators B Chem., 207, 865, 10.1016/j.snb.2014.10.085 Szilágyi, 2010, Gas sensingselectivity of hexagonal and monoclinic WO3 to H2S, Solid State Sci., 12, 1857, 10.1016/j.solidstatesciences.2010.01.019 Park, 2014, H2S gas sensingproperties of CuO-functionalized WO3 nanowires, Ceram. Int., 40, 11051, 10.1016/j.ceramint.2014.03.120 Ma, 2013, Fe2O3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasen-sitive sensors for low-ppm-level H2S gas, Nanoscale, 5, 895, 10.1039/C2NR33201A Deng, 2013, Porous Fe2O3 nanospheres-based H2S sensor with fast response, high selectivity andenhanced sensitivity, J. Mater. Chem. A, 1, 12400, 10.1039/c3ta12253k Calestani, 2010, Growth of ZnO tetrapods for nanostructure-based gas sensors, Sens. Actuators B Chem., 144, 472, 10.1016/j.snb.2009.11.009 Kim, 2011, Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing, J. Phys. Chem. C, 115, 7218, 10.1021/jp110129f Liu, 2009, Hierarchically porous ZnO with sensitivityand selectivity to H2S derived from biotemplates, Sens. Actuators B Chem., 136, 499, 10.1016/j.snb.2008.10.043 Shewale, 2013, Thickness dependent H2S sensing properties of nanocrystalline ZnO thin films derived by advanced spray pyrolysis, Sens. Actuators B Chem., 177, 695, 10.1016/j.snb.2012.11.076 Jimenez, 2003, Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders, Sens. Actuators B Chem., 93, 475, 10.1016/S0925-4005(03)00198-9 Mickelson, 2012, Low-power, fast, selective nanoparticle-based hydrogen sulfide gas sensor, Appl. Phys. Lett., 100, 173110, 10.1063/1.3703761 Guo, 2015, PEG-20000 assisted hydrothermal synthesis of hierarchical ZnO flowers: structure, growth and gas sensor properties, Physica E, 73, 163, 10.1016/j.physe.2015.05.006 Deng, 2016, Enhanced H2S gas sensing properties of undoped ZnO nanocrystallinefilms from QDs by low-temperature processing, Sens. Actuators B Chem., 224, 153, 10.1016/j.snb.2015.10.022 Balamurugan, 2015, Perovskite hexagonal YMnO3 nanopowder as p-type semiconductorgas sensor for H2S detection, Sens. Actuators B Chem., 221, 857, 10.1016/j.snb.2015.07.018 Chena, 2017, ZnO-nanowire size effect induced ultra-high sensing response to ppb-level H2S, Sens. Actuators B Chem., 240, 264, 10.1016/j.snb.2016.08.120 Navale, 2017, Solution-processed rapid synthesis strategy of Co3O4 for the sensitive and selective detection of H2S, Sens. Actuators B Chem., 245, 524, 10.1016/j.snb.2017.01.195 Patil, 2018, BaTiO3 nanostructures for H2S gas sensor: influence of band-gap, size and shape on sensing mechanism, Vacuum, 146, 445 Tian, 2017, Hierarchical and hollow Fe2O3 nano-boxes derived from metalorganic frameworks with excellent sensitivity to H2S, ACS Appl. Mater. Interfaces, 9, 29669, 10.1021/acsami.7b07069 Duan, 2017, The fabrication of In2O3 toruloid nanotubes and their room temperature gas sensing properties for H2S, Mater. Res. Exp., 4 Shewale, 2013, H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis, Sens. Actuators B Chem., 186, 226, 10.1016/j.snb.2013.05.073 Ma, 2015, Room temperature ppb level H2S detection of a single Sb-doped SnO2 nanoribbon device, Sens. Actuators B Chem., 216, 72, 10.1016/j.snb.2015.04.025 Zhao, 2011, Electrospun Cu-doped ZnO nanofibers for H2S sensing, Sens. Actuators B Chem., 156, 588, 10.1016/j.snb.2011.01.070 Hosseini, 2015, Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures, J. Alloys Compd., 628, 222, 10.1016/j.jallcom.2014.12.163 Woo, 2014, Selective, sensitive, and reversible detection of H2S using Mo-doped ZnO nanowire network sensors, J. Mater. Chem. A, 2, 6412, 10.1039/C4TA00387J Ouyang, 2012, Facile synthesis and enhanced H2S sensing performances of Fe-doped MoO3 micro-structures, Sens. Actuators B Chem., 169, 17, 10.1016/j.snb.2012.01.042 Chaudhari, 2012, Nanocrystalline chemically modified CdIn2O4 thick films for H2S gas sensor, Thin Solid Films, 520, 4057, 10.1016/j.tsf.2011.08.010 Jagtap, 2008, H2S sensing characteristics of La0.7Pb0.3Fe0.4Ni0.6O3 based nanocrystalline thick film gas sensor, Sens. Actuators B Chem., 131, 290, 10.1016/j.snb.2007.11.021 Liang, 2016, Green and rapid synthesis of 3DFe2(MoO4)3 by microwave irradiation to detect H2S gas, Mater. Lett., 168, 171, 10.1016/j.matlet.2016.01.048 Zhao, 2015, Improving gas-sensing properties of electrospun In2O3 nanotubes by Mg acceptor doping, Sens. Actuators B Chem., 207, 313, 10.1016/j.snb.2014.10.087 Satish, 2009, H2S gas sensitive indium-doped ZnO thin films: preparation and characterization, Sens. Actuators B Chem., 143, 164, 10.1016/j.snb.2009.08.056 Wang, 2007, H2S sensing characteristics of Pt-doped α-Fe2O3 thick film sensors, Sens. Actuators B Chem., 125, 79, 10.1016/j.snb.2007.01.037 Wang, 2007, Synthesis and characterization of Pd-doped α-Fe2O3 H2S sensor with low power consumption, Mater. Sci. Eng. B, 140, 98, 10.1016/j.mseb.2007.04.004 Wang, 2008, Low-temperature H2S sensors based on Ag-doped Fe2O3 nanoparticles, Sens. Actuators B Chem., 131, 183, 10.1016/j.snb.2007.11.002 Ramgir, 2005, A room temperature nitric oxide sensor actualized form Ru-doped SnO2 nanowires, Sens. Actuators B Chem., 107, 708, 10.1016/j.snb.2004.12.073 Kruefua, 2015, Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods, Sens. Actuators B Chem., 215, 630, 10.1016/j.snb.2015.03.037 Balouria, 2015, Enhanced H2S sensing characteristics of Au modified Fe2O3 thin films, Sens. Actuators B Chem., 219, 125, 10.1016/j.snb.2015.04.113 Ramgir, 2013, Room temperature H2S sensor based on Au modified ZnO nanowires, Sens. Actuators B Chem., 186, 718, 10.1016/j.snb.2013.06.070 Niranjan, 2003, High H2S-sensitive copper doped tin oxide thin film, Mater. Chem. Phys., 80, 250, 10.1016/S0254-0584(02)00467-4 Niranjan, 2002, A novel hydrogen sulphide room temperature sensor based on copper nanocluster functionalized tin oxide thin films, Sens. Actuators B Chem., 85, 26, 10.1016/S0925-4005(02)00046-1 Pongpaiboonkula, 2016, Enhancement of H2S-sensing performances with Fe-doping in CaCu3Ti4O12 thin films prepared by a sol–gel method, Sens. Actuators B Chem., 224, 118, 10.1016/j.snb.2015.08.113 Datta, 2012, Vacuum deposited WO3 thin films based sub-ppm H2S sensor, Mater. Chem. Phys., 134, 851, 10.1016/j.matchemphys.2012.03.080 Liu, 2014, V-doped In2O3 nanofibers for H2S detection at low temperature, Ceram. Int., 40, 6685, 10.1016/j.ceramint.2013.11.129 Bodade, 2008, Synthesis and characterization of CdO-doped nanocrystalline ZnO:TiO2-based H2S gas sensor, Vacuum, 82, 588, 10.1016/j.vacuum.2007.08.015 Kolhe, 2017, Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties, Phys. B Condens. Matter, 524, 90, 10.1016/j.physb.2017.07.056 Nimbalkar, 2017, Synthesis of highly selective and sensitive Cu-doped ZnO thin film sensor for detection of H2S gas, Mater. Sci. Semicond. Proc., 71, 332, 10.1016/j.mssp.2017.08.022 Guo, 2018, Enhanced hydrogen sulfide sensing properties of Pt-functionalized α-Fe2O3 nanowires prepared by one-step electrospinning, Sens. Actuators B Chem., 255, 1015, 10.1016/j.snb.2017.07.055 Yan, 2017, Room temperature H2S gas sensor based on Au-doped ZnFe2O4 yolk-shell microsphere, Anal. Sci., 33, 945, 10.2116/analsci.33.945 Malek Alaie, 2015, Selective hydrogen sulfide(H2S) sensorsbased on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide, Mater. Sci. Semicond. Process., 38, 93, 10.1016/j.mssp.2015.03.034 Wang, 2012, Synthesis and enhanced H2S gas sensing properties of MoO3/CuO p-n junction nanocomposite, Sens. Actuators B Chem., 171–172, 256, 10.1016/j.snb.2012.03.058 Choi, 2014, Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers fordiagnosis of diseases, ACS Appl. Mater. Interfaces, 6, 9061, 10.1021/am501394r Verma, 2010, Comparison of H2S sensing response of hetero-structure sensor (CuO-SnO2) prepared by rf and pulsed laser deposition, Thin Solid Films, 518, e181, 10.1016/j.tsf.2010.03.162 Hwang, 2009, Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO, Sens. Actuators B Chem., 142, 105, 10.1016/j.snb.2009.07.052 Kumar, 2009, Copper doped SnO2 nanowires as highly sensitive H2S sensor, Sens. Actuators B Chem., 138, 587, 10.1016/j.snb.2009.02.053 Ghimbeu, 2008, Electrostatic sprayed SnO2 and Cu-doped SnO2 films for H2S detection, Sens. Actuators B Chem., 133, 694, 10.1016/j.snb.2008.04.007 Li, 2014, Fe3+ facilitating the response of NiO towards H2S, RSC Adv., 4, 14201, 10.1039/C4RA00182F Patil, 2006, Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature, Sens. Actuators B Chem., 120, 316, 10.1016/j.snb.2006.02.022 Lee, 2005, H2S microgas sensor fabricated by thermal oxidation of Cu/Sn double layer, Sens. Actuators B Chem., 108, 84, 10.1016/j.snb.2005.01.037 Kong, 2005, High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature, Sens. Actuators B Chem., 105, 449, 10.1016/j.snb.2004.07.001 Wagh, 2004, Surface cupricated SnO2–ZnO thick films as a H2S gas sensor, Mater. Chem. Phys., 84, 228, 10.1016/S0254-0584(03)00232-3 Chowdhuri, 2010, Contribution of adsorbed oxygen and interfacial space charge for enhanced response of SnO2 sensors having CuO catalyst for H2S gas, Sens. Actuators B Chem., 145, 155, 10.1016/j.snb.2009.11.050 Katti, 2003, Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation, Sens. Actuators B Chem., 96, 245, 10.1016/S0925-4005(03)00532-X Zhou, 2003, Study on sensing mechanism of CuO-SnO2 gas sensors, Mater. Sci. Eng. B, 99, 44, 10.1016/S0921-5107(02)00501-9 Yu, 2012, Synthesis and H2S gas sensing properties of cage-like MoO3/ZnO composite, Sens. Actuators B Chem., 171–172 Yang, 2016, A pulse-driven sensor based on ordered mesoporous Ag2O/SnO2 with improved H2S-sensing performance, Sens. Actuators B Chem., 228, 529, 10.1016/j.snb.2016.01.065 Khanna, 2003, CuO-doped SnO2 thin films as hydrogen sulphide gas sensor, Appl. Phys. Lett., 82, 4388, 10.1063/1.1584071 Verma, 2012, A highly sensitive SnO2–CuO multilayered sensor structure for detection of H2S gas, Sens. Actuators B. Chem., 166–167, 378, 10.1016/j.snb.2012.02.076 Fu, 2013, CuS-doped CuO nanoparticles sensor for detection of H2S and NH3 at room temperature, Electrochim. Acta, 112, 230, 10.1016/j.electacta.2013.08.168 Yuanda, 2001, Thin film sensors of SnO2-CuO-SnO2 sandwich structure to H2S, Sens. Actuators B Chem., 79, 187, 10.1016/S0925-4005(01)00873-5 Vasiliev, 1998, CuO/SnO2 thin film heterostructures as chemical sensors to H2S, Sens. Actuators B Chem., 50, 186, 10.1016/S0925-4005(98)00235-4 Rumyantseva, 1996, Influence of copper on sensor properties of tin dioxide films in H2S, Mater. Sci. Eng. B, 41, 228, 10.1016/S0921-5107(96)01601-7 Bai, 2015, Synthesis of MoO3/reduced grapheneoxide hybrids and mechanism of enhancing H2S sensing performances, Sens. Actuators B Chem., 216, 113, 10.1016/j.snb.2015.04.036 Geng, 2010, Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S, Synth. Met., 160, 1708, 10.1016/j.synthmet.2010.06.005 Kapsea, 2008, Nanocrystalline In2O3-based H2S sensors operable at low temperatures, Talanta, 76, 610, 10.1016/j.talanta.2008.03.050 Choi, 2014, Selective detectionof acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets, ACS Appl. Mater. Interfaces, 6, 2588, 10.1021/am405088q Liang, 2015, Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating, Sens. Actuators B Chem., 209, 934, 10.1016/j.snb.2014.11.130 Chowdhuri, 2004, Response speed of SnO2-based H2S gas sensors with CuO nanoparticles, Appl. Phys. Lett., 84, 1181, 10.1063/1.1646760 Yu, 2016, Low concentration H2S detection of CdO-decorated hierarchically mesoporous NiO nanofilm with wrinkle structure, Sens. Actuators B Chem., 230, 706, 10.1016/j.snb.2016.02.128 Datta, 2012, Selective H2S sensing characteristics of hydrothermally grown ZnO-nanowires network tailored by ultrathin CuO layers, Sens. Actuators B Chem., 394–401, 166 Kim, 2012, One-pot hydrothermal synthesis of CuO-ZnO composite hollow spheres for selective H2S detection, Sens. Actuators B Chem., 168, 83, 10.1016/j.snb.2012.01.045 Meng, 2013, Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature, Sens. Actuators B Chem., 182, 197, 10.1016/j.snb.2013.02.112 Xue, 2008, Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods, J. Phys. Chem. C, 112, 12157, 10.1021/jp8037818 Yang, 2017, Hierarchical NiO cube/nitrogen-doped reduced graphene oxide composite with enhanced H2S sensing properties at low temperature, ACS Appl. Mater. Interfaces, 9, 26293, 10.1021/acsami.7b04969 Yang, 2018, Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance, Ceram. Int., 44, 1078, 10.1016/j.ceramint.2017.10.052 Kaura, 2017, RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature, Sens. Actuator B, 242, 389, 10.1016/j.snb.2016.11.054 Li, 2018, Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection, Sens. Actuator B, 254, 834, 10.1016/j.snb.2017.06.110 Balamurugan, 2017, Enhanced H2S sensing performance of a p-type semiconducting PdO-NiO nanoscale heteromixture, Appl. Surf. Sci., 420, 638, 10.1016/j.apsusc.2017.05.166 Ashori, 2014, Adsorption of H2S on carbonaceous materials of different dimensionality, Int. J. Hydrogen Energy, 39, 6610, 10.1016/j.ijhydene.2014.02.004 Doyle, 2001 Li, 2005, A simple method for selective immobilization of silver nanoparticles, Appl. Surf. Sci., 250, 109, 10.1016/j.apsusc.2004.12.039 Liu, 2015, Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite, Fuel, 157, 183, 10.1016/j.fuel.2015.05.003 Huang, 2015, Synthesis and characterization of γ-Fe2O3 for H2S removal at Low temperature, Ind. Eng. Chem. Res., 34, 8469, 10.1021/acs.iecr.5b01398 Afzal, 2012, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sens. Actuators B Chem., 171–172, 25, 10.1016/j.snb.2012.05.026 Barsan, 1999, Fundamental and pratical aspects in the design of nanoscaled SnO2 gas sensors: a status report, Fresenius J. Anal. Chem., 365, 287, 10.1007/s002160051490 Franke, 2006, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?, Small, 2, 36, 10.1002/smll.200500261 Katoch, 2015, Importance of the nanograin size on the H2S-sensing properties of ZnO–CuO composite nanofibers, Sens. Actuators B Chem., 214, 111, 10.1016/j.snb.2015.03.012 Chu, 2006, Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method, Sens. Actuators B Chem., 120, 177, 10.1016/j.snb.2006.02.008 Mohammadi-Manesh, 2015, Cu- and CuO-decorated graphene as a nanosensor for H2S detection at room temperature, Surf. Sci., 636, 36, 10.1016/j.susc.2015.02.002 Choi, 2014, Dual functional sensing mechanism in SnO2/ZnO core shell nanowires, ACS Appl. Mater. Interfaces, 6, 8281, 10.1021/am501107c Somacescu, 2014, Mesoporous Sn0. 9-xIn0.1Cux(I)O2- δ gas sensors with selectivity to H2S working under humid air conditions, Microporous Mesoporous Mater., 197, 63, 10.1016/j.micromeso.2014.06.001 Hien, 2014, H2S-sensing properties of Cu2O submicron-sized rods and trees synthesized by radio-frequency magnetron sputtering, Sens. Actuators B Chem., 202, 330, 10.1016/j.snb.2014.05.070 Huang, 2015, A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature, Appl. Surf. Sci., 351, 1025, 10.1016/j.apsusc.2015.06.053 Sarfraz, 2012, Printed copper acetate based H2S sensor on paper substrate, Sens. Actuators B Chem., 173, 868, 10.1016/j.snb.2012.08.008 Wang, 2016, Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-inducedenhanced sensing mechanism, Sens. Actuators B Chem., 228, 74, 10.1016/j.snb.2016.01.002 Lee, 2014, The stability,sensitivity and response transients of ZnO, SnO2 and WO3 sensors underacetone, toluene and H2S environments, Sens. Actuators B Chem., 197, 300, 10.1016/j.snb.2014.02.043 Min, 2010, Microwave-assistant synthesis of ordered CuO micro-structures on Cu substrate, Appl. Surf. Sci., 257, 132, 10.1016/j.apsusc.2010.06.049 Choi, 2013, Electrospun nanofibers of CuO-SnO2 nanocomposite as semiconductor gas sensors for H2S detection, Sens. Actuators B Chem., 176, 585, 10.1016/j.snb.2012.09.035 Chen, 2008, H2S detection by vertically aligned CuO nanowire array sensors, J. Phys. Chem. C, 112, 16017, 10.1021/jp805919t Ramgir, 2010, Nanowires based sensors, Small, 6, 1705, 10.1002/smll.201000972 Ramgir, 2010, Reactive VLS and the reversible switching between VS and VLS growth modes for ZnO nanowire growth, J. Phys. Chem. C, 114, 10323, 10.1021/jp909377b Maekawa, 1991, Sensing behavior of CuO-loaded SnO2 element for H2S detection, Chem. Lett., 4, 575, 10.1246/cl.1991.575 Choi, 2013, Electrospun nanofibers of CuO/SnO2 nanocomposite as semiconductor gas sensors for H2S detection, Sens. Actuators B Chem., 176, 585, 10.1016/j.snb.2012.09.035 Park, 2016, Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor, Mater. Res. Bull., 82, 130, 10.1016/j.materresbull.2016.02.011 Arya, 2012, Recent advances in ZnO nanostructures and thin films for biosensor applications: review, Anal. Chim. Acta, 737, 1, 10.1016/j.aca.2012.05.048 Mirzaei, 2016, ZnO-capped nanorod gas sensors, Ceram. Int., 42, 6187, 10.1016/j.ceramint.2015.12.179 Brinzari, 2001, Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control, Thin Solid Films, 391, 167, 10.1016/S0040-6090(01)00978-6 Kapse, 2009, H2S sensing properties of La-doped nanocrystalline In2O3, Vacuum, 83, 346, 10.1016/j.vacuum.2008.05.027 Deng, 2016, Improving the fast discharge performance of high-voltage LiNi0.5Mn1.5O4 spinel by Cu2+, Al3+, Ti4+ tri-doping, J. Alloys Compd., 677, 18, 10.1016/j.jallcom.2016.03.256 Saris, 1994, Is Zn2+ transported by the mitochondrial calcium uniporter?, FEBS Lett., 356, 195, 10.1016/0014-5793(94)01256-3 Wang, 2012, CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection, Mater. Sci. Eng. C, 32, 2079, 10.1016/j.msec.2012.05.042 Guo, 2016, High-response H2S sensor based on ZnO/SnO2 heterogeneous nanospheres, RSC Adv., 6, 15048, 10.1039/C5RA22187K Das, 2014, SnO2: a comprehensive review on structures and gas sensors, Prog. Mater. Sci., 66, 112, 10.1016/j.pmatsci.2014.06.003 Kwon, 2017, Attachment of Co3O4 layer to SnO2 nanowires for enhanced gas sensing properties, Sens. Actuators B Chem., 239, 180, 10.1016/j.snb.2016.07.177 Kim, 2012, Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts, Curr. Appl. Phys., 12, 1125, 10.1016/j.cap.2012.02.006 Huang, 2009, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures, Sensors, 9, 9903, 10.3390/s91209903 Choi, 2012, H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers, Sens. Actuators B Chem., 169, 54, 10.1016/j.snb.2012.02.054 Liu, 2009, Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors, Sens. Actuators B Chem., 140, 190, 10.1016/j.snb.2009.04.027 Fu, 2016, Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor, J. Mater. Chem. A, 4, 1390, 10.1039/C5TA09190J Liu, 2011, Nanocrystalline In2O3-SnO2 thick films for low-temperature hydrogen sulfide detection, Ceram. Interfaces, 37, 1889, 10.1016/j.ceramint.2011.02.005 Errana, 2012 Long, 2015, Synthesis of WO3 and its gas sensing: a review, J. Mater. Sci. Mater. Electr., 26, 4698, 10.1007/s10854-015-2896-4 Ramgir, 2013, Selective H2S sensing characteristics of CuO modified WO3 thin films, Sens. Actuators B Chem., 188, 525, 10.1016/j.snb.2013.07.052 Shen, 2014, Microstructure and enhanced H2S sensing properties of Pt-loaded WO3 thin films, Sens. Actuators B Chem., 193, 273, 10.1016/j.snb.2013.11.106 Lu, 2007, In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation, J. Phys. Chem. C, 111, 7676, 10.1021/jp070973m Yuan, 2013, High-performance NO2 sensorsbased on chemically modified graphene, Adv. Mater., 25, 766, 10.1002/adma.201203172 Hu, 2014, Ultrafast and sensitive room temperature NH3 gas sensors basedon chemically reduced graphene oxide, Nanotechnology, 25, 1, 10.1088/0957-4484/25/2/025502 Su, 2009, Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubesand their gas sensing properties, Sens. Actuators B Chem., 139, 488, 10.1016/j.snb.2009.03.051 Basu, 2012, Recent developments on graphene and graphene oxide based solid state gas sensors, Sens. Actuators B Chem., 173, 1, 10.1016/j.snb.2012.07.092 Su, 2016, NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature, Sens. Actuators B Chem., 223, 202, 10.1016/j.snb.2015.09.091 Meng, 2015, Graphene-based hybrids for chemiresistive gas sensors, TrAC Trends Anal. Chem., 68, 37, 10.1016/j.trac.2015.02.008 Hu, 2017, Synthesis and gas sensing properties of molybdenum oxide modified tungsten oxide microstructures for ppb-level hydrogen sulphide detection, RSC Adv., 7, 28542, 10.1039/C7RA03864J Yin, 2014, Microwave-assisted growth of In2O3 nanoparticles on WO3 nanoplates to improve H2S-sensing performance, J. Mater. Chem. A, 2, 18867, 10.1039/C4TA03426K Vomiero, 2007, In2O3 nanowires for gas sensors: morphology and sensing characterisation, Thin Solid Films, 515, 8356, 10.1016/j.tsf.2007.03.034 Kaur, 2008, Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers, Sens. Actuators B Chem., 133, 456, 10.1016/j.snb.2008.03.003 Tu, 2010, H2S-sensing properties of Pt-doped mesoporous indium oxide, Appl. Surf. Sci., 256, 5051, 10.1016/j.apsusc.2010.03.055 Mirzaei, 2016, Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol-gel method, Ceram. Int., 42, 6136, 10.1016/j.ceramint.2015.12.176 Chaudhari, 2006, Characterization of nanosized TiO2 based H2S gas sensor, J. Mater. Sci., 41, 4860, 10.1007/s10853-006-0042-7 Chen, 2012, A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature, Ceram. Int., 38, 503, 10.1016/j.ceramint.2011.07.035 Sun, 2016, Synthesis of TiO2 nanorods decorated with NiO nanoparticles and their acetone sensing properties, Ceram. Int., 42, 1063, 10.1016/j.ceramint.2015.09.031 Ma, 2016, Improved H2S sensing properties of Ag/TiO2 nanofibers, Ceram. Int., 42, 2041, 10.1016/j.ceramint.2015.09.034 Tong, 2013, In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors, Int. J Hydrogen Energy, 38, 12090, 10.1016/j.ijhydene.2013.06.120 Balouria, 2013, Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films, Sens. Actuators B Chem., 176, 38, 10.1016/j.snb.2012.08.064 Bai, 2014, Intrinsic characteristic and mechanism in enhancing H2S sensing of Cd-doped MoO3 nanobelts, Sens. Actuators B Chem., 204, 754, 10.1016/j.snb.2014.08.017 Miyauchi, 2010, Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices, Ceram. Int., 46, 1529 Geng, 2008, Synthesis of polyhedral ZnSnO3 microcrystals with controlled exposed facets and their selective gassensing properties, Small, 4, 1337, 10.1002/smll.200701177 Zeng, 2009, Synthesis and gas-sensing properties of ZnSnO3 cubic nanocages and nanoskeletons, Sens. Actuators B Chem., 143, 449, 10.1016/j.snb.2009.07.021 Jin, 2012, Highly sensitive H2S gas sensors based on CuO-coated ZnSnO3 nanorods synthesized by thermal evaporation, Ceram. Int., 38, 5973, 10.1016/j.ceramint.2012.04.050 Liu, 2016, Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance, Sci. Rep., 6, 27373, 10.1038/srep27373 Supothina, 2014, Hydrothermal synthesis of K2W4O13 nanowire with high H2S gas sensitivity, Microelectr. Eng., 126, 88, 10.1016/j.mee.2014.06.015 Shuk, 1993, Electrodes for oxygen sensors based on rare earth manganites orcobaltites, Sens. Actuators B Chem., 16, 401, 10.1016/0925-4005(93)85218-Y Joanni, 2008, P-type semiconducting gassensing behavior of nanoporous rf sputtered CaCu3Ti4O12 thin films, Appl. Phys. Lett., 92, 132110, 10.1063/1.2905810 Ponce, 2015, Electrical behavior analysis of n-type CaCu3Ti4O12 thick films exposed to different atmospheres, J. Eur. Ceram. Soc., 35, 153, 10.1016/j.jeurceramsoc.2014.08.041 Boontum, 2018, H2S sensing characteristics of Ni-doped CaCu3Ti4O12 films synthesized by a sol-gel method, Sens. Actuators B Chem., 260, 877, 10.1016/j.snb.2018.01.090 Natkaeo, 2018, Highly selective sub-10 ppm H2S gas sensors based on Ag-doped CaCu3Ti4O12 films, Sens. Actuators B Chem., 260, 571, 10.1016/j.snb.2017.12.134 Chu, 2004, H2S-sensing characteristics of Cd2Sb2O7 thick film sensor prepared by co-precipitation method, Mater. Sci. Eng. B, 110, 103, 10.1016/j.mseb.2004.01.024 Huang, 2017, Detecting low concentration of H2S gas by BaTiO3 nanoparticle-based sensors, Sens. Actuators B Chem., 238, 16, 10.1016/j.snb.2016.06.172 Stanoiua, 2018, H2S selective sensitivity of Cu doped BaSrTiO3 under operando conditions and the associated sensing mechanism, Sens. Actuators B Chem., 264, 327, 10.1016/j.snb.2018.03.013 Ayesh, 2017, Spinel ferrite nanoparticles for H2S gas sensor, Appl. Phys. A, 123, 682, 10.1007/s00339-017-1305-7 Haijaa, 2017, Characterization of H2S gas sensor based on CuFe2O4 nanoparticles, J. Alloys Compd., 690, 461, 10.1016/j.jallcom.2016.08.174 Hu, 2018, Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor, Sens. Actuators B Chem., 264, 139, 10.1016/j.snb.2018.02.110 Gao, 2017, Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets, Sens. Actuators B Chem., 246, 662, 10.1016/j.snb.2017.02.100 Kapse, 2009, Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: a novel material for H2S sensing, Mater. Chem. Phys., 113, 638, 10.1016/j.matchemphys.2008.08.017 Liu, 2004, Hydrogen sulfide sensing properties of NiFe2O4 nanopowder doped with noble metals, Sens. Actuators B Chem., 102, 148, 10.1016/j.snb.2004.04.014 Stanoiu, 2017, Sensors based on mesoporous SnO2-CuWO4 with high selective sensitivity to H2S at low operating temperature, J. Hazard. Mater., 331, 150, 10.1016/j.jhazmat.2017.02.038 Cui, 2017, In-situ deposited flower-like Bi2MoO6 microspheres thin film based sensors for highly selective detection of ppb-level H2S at low temperature, Sens. Actuators B Chem., 247, 681, 10.1016/j.snb.2017.03.100 Chen, 2013, Porous iron molybdate nanorods: in situ diffusion synthesis and low-temperature H2S gas sensing, ACS Appl. Mater. Interfaces, 5, 3267, 10.1021/am400324g