Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances
Tài liệu tham khảo
Pifferi, 2011, Odorant detection and discrimination in the olfactory system, Sens. Microsyst. Lect. Notes Electr. Eng., 91, 3, 10.1007/978-94-007-1324-6_1
Chiu, 2013, Towards a chemiresistive sensor-integrated electronic nose: a review, Sensors, 13, 14214, 10.3390/s131014214
Rouby, 2002
Mirzaei, 2016, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review, Ceram. Int., 42, 15119, 10.1016/j.ceramint.2016.06.145
Xiao, 2001, Denaturing high-performance liquid chromatography: a review, Hum. Mutat., 17, 439, 10.1002/humu.1130
Cortes, 2009, Comprehensive two dimensional gas chromatography review, J. Sep. Sci., 32, 883, 10.1002/jssc.200800654
Haddad, 2008, Recent developments and emerging directions in ion chromatography, J. Chromatogr. A, 1184, 456, 10.1016/j.chroma.2007.10.022
Khanna, 2012
Mirzaei, 2016, α-Fe2O3 based nanomaterials as gas sensors, J. Mater. Sci. Mater. Electron., 27, 3109, 10.1007/s10854-015-4200-z
Mirzaei, 2016, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review, Sens. Actuators B Chem., 237, 749, 10.1016/j.snb.2016.06.114
Hodgkinson, 2012, Optical gas sensing: a review, Meas. Sci. Technol., 24
Sepaniak, 2002, Peer reviewed: microcantilever transducers: a new approach in sensor technology, Anal. Chem. A, 74, 568, 10.1021/ac022156i
Homola, 1999, Surface plasmon resonance sensors: review, Sens. Actuators B Chem., 54, 3, 10.1016/S0925-4005(98)00321-9
Azad, 1992, Solid-state gas sensors: a review, J. Electrochem. Soc., 139, 3690, 10.1149/1.2069145
Länge, 2008, Surface acoustic wave biosensors: a review, Anal. Bioanal. Chem., 391, 1509, 10.1007/s00216-008-1911-5
Barochi, 2011, Development of microwave gas sensors, Sens. Actuators B Chem., 157, 374, 10.1016/j.snb.2011.04.059
Mirzaei, 2016, CO gas sensing properties of In4Sn3O12 and TeO2 composite nanoparticle sensors, J. Hazard. Mater., 305, 130, 10.1016/j.jhazmat.2015.11.044
Mirzaei, 2015, Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review, J. Nanopart. Res., 17, 1, 10.1007/s11051-015-3164-5
Balouria, 2013, Nano-crystalline Fe2O3 thin films for ppm level detection of H2S, Sens. Actuators B Chem., 181, 471, 10.1016/j.snb.2013.02.013
Zhu, 2014, A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature, Appl. Surf. Sci., 320, 348, 10.1016/j.apsusc.2014.09.108
Raut, 2012, Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection, Measurement, 45, 94, 10.1016/j.measurement.2011.09.015
Moon, 2016, Co3O4–SWCNT composites for H2S gas sensor application, Sens. Actuators B Chem., 222, 166, 10.1016/j.snb.2015.08.072
Choi, 2018, Dual sensitization of MWCNTs by co-decoration with p-and n-type metal oxide nanoparticles, Sens. Actuators B Chem., 264, 150, 10.1016/j.snb.2018.02.179
Kim, 2017, Synthesis and selective sensing properties of rGO/metal-coloaded SnO2 nanofibers, J. Electr. Mater., 46, 3531, 10.1007/s11664-017-5301-7
Guo, 2016, Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor, Sens. Actuators B Chem., 226, 266, 10.1016/j.snb.2015.11.140
Shewale, 2015, H2S gas sensitive Sn-doped ZnO thin films: synthesis and characterization, J. Anal. Appl. Pyrol., 112, 348, 10.1016/j.jaap.2015.01.001
Wang, 2015, Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors, Sens. Actuators B Chem., 209, 515, 10.1016/j.snb.2014.12.010
Diao, 2015, High response to H2S gas with facile synthesized hierarchical ZnO microstructures, Sens. Actuators B Chem., 219, 30, 10.1016/j.snb.2015.04.116
Mirzaei, 2016, Fe2O3/Co3O4 composite nanoparticle ethanol sensor, J. Korean Phys. Soc., 69, 373, 10.3938/jkps.69.373
Lee, 2009, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B Chem., 140, 319, 10.1016/j.snb.2009.04.026
Cadena, 2007, Gas sensors based on nanostructured materials, Analyst, 132, 1083, 10.1039/b704562j
Yamazoe, 1991, New approaches for improving semiconductor gas sensors, Sens. Actuators B Chem., 5, 7, 10.1016/0925-4005(91)80213-4
Korotcenkov, 2007, Metal oxides for solid-state gas sensors: what determines our choice?, Mater. Sci. Eng. B, 139, 1, 10.1016/j.mseb.2007.01.044
Zoolfakar, 2013, Nanostructured copper oxides as ethanol vapour sensors, Sens. Actuators B Chem., 185, 620, 10.1016/j.snb.2013.05.042
Yamazoe, 2003, Oxide semiconductor gas sensor, Catal. Surv. Asia, 7, 63, 10.1023/A:1023436725457
Kim, 2014, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview, Sens. Actuators B Chem., 192, 607, 10.1016/j.snb.2013.11.005
Xia, 2013, Ceria modified crystalline mesoporous Cr2O3 based nanocomposites supported metal oxide for benzene complete oxidation, Catal. Commun., 41, 91, 10.1016/j.catcom.2013.07.008
Xu, 2016, The advances of Co3O4 as gas sensing materials: a review, J. Alloys Compd., 686, 753, 10.1016/j.jallcom.2016.06.086
Lu, 2016, Synthesis of cactus-like NiO nanostructure and their gas-sensing properties, Mater. Lett., 164, 48, 10.1016/j.matlet.2015.10.117
Zhang, 2006, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors, Chem. Mater., 18, 867, 10.1021/cm052256f
Fu, 2007, Sensing properties and mechanism of gas sensor for H2S and NO2 based on [Cu5(bipyO2)6Cl8]Cl2, Sens. Actuators B Chem., 123, 1113, 10.1016/j.snb.2006.11.028
Fu, 2013, Sensing behavior of CdS nanoparticles to SO2, H2S and NH3 at room temperature, Mater. Res. Bull., 48, 1784, 10.1016/j.materresbull.2013.01.037
Merdrignac-Conanec, 2000, Humidity effect on baseline conductance and H2S sensitivity of cadmium germanium oxynitride thick film gas sensors, Sens. Actuators B Chem., 63, 86, 10.1016/S0925-4005(00)00302-6
Sarfraza, 2014, A printed H2S sensor with electro-optical response, Sens. Actuators B Chem., 191, 821, 10.1016/j.snb.2013.10.011
Mohammadzadeha, 2012, Preparation of nanosensors based on organic functionalized MWCNT for H2S detection, Appl. Surf. Sci., 259, 159, 10.1016/j.apsusc.2012.07.011
Dilonardo, 2016, Electrophoretic deposition of AuNPs on MWCNT-based gas sensor for tailored gas detection with enhanced sensing properties, Sens. Actuators B Chem., 223, 417, 10.1016/j.snb.2015.09.112
Zhao, 2016, Highly sensitive H2S sensors based on ultrathin organic single-crystal microplate transistors, Org. Electron., 32, 94, 10.1016/j.orgel.2016.02.019
Lee, 2011, Selective and rapid room temperature detection of H2S using gold nanoparticle chain arrays, Electroanalysis, 23, 2623, 10.1002/elan.201100295
Joshia, 2014, Flexible H2S sensor based on gold modified polycarbazole films, Sens. Actuators B Chem., 200, 227, 10.1016/j.snb.2014.04.041
Pandey, 2012, A review of sensor-based methods for monitoring hydrogen sulfide, TrAC Trends Anal. Chem., 32, 87, 10.1016/j.trac.2011.08.008
Guo, 2015, Metal oxides and metal salt nanostructures for hydrogen sulfide sensing: mechanism and sensing performance, RSC Adv., 5, 54793, 10.1039/C5RA10394K
Patil, 2015, Semiconductor metal oxide compounds based gas sensors: a literature review, Front. Mater. Sci., 9, 14, 10.1007/s11706-015-0279-7
Llobet, 2017, Nanomaterials for the selective detection of hydrogen sulfide in air, Sensors, 17, 391, 10.3390/s17020391
Kim, 2012, H2S gas sensing properties of bare and Pd-functionalized CuO nanorods, Sens. Actuators B Chem., 161, 594, 10.1016/j.snb.2011.11.006
Mortezaali, 2014, The correlation between the substrate temperature andmorphological ZnO nanostructures for H2S gas sensors, Sens. Actuators A Phys., 206, 30, 10.1016/j.sna.2013.11.027
Shewale, 2013, Influence of substrate temperature on H2S gas sensing properties of nanocrystalline zinc oxide thin films prepared by advanced spray pyrolysis, Sens. J. IEEE, 13, 1992, 10.1109/JSEN.2013.2246760
Shinde, 2012, Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor, J. Alloys Compd., 528, 109, 10.1016/j.jallcom.2012.03.020
Ionescu, 2005, Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors, Sens. Actuators B Chem., 104, 132, 10.1016/j.snb.2004.05.015
Chen, 2013, Sonochemical synthesis and ppb H2S sensing performances of CuO nanobelts, Sens. Actuators B Chem., 176, 15, 10.1016/j.snb.2012.08.007
Steinhauer, 2013, Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere, Sens. Actuators B Chem., 186, 550, 10.1016/j.snb.2013.06.044
Tamaki, 1998, Dilute hydrogen sulphide sensing properties of CuO-SnO2 thin film prepared by lowpressure evaporation method, Sens. Actuators B Chem., 49, 121, 10.1016/S0925-4005(98)00144-0
Zhang, 2008, Room-temperature high sensitivity H2S gas sensor based on dendritic ZnO nanostructure with macroscale in appearance, J. Appl. Phys., 103, 104305, 10.1063/1.2924430
Bai, 2015, Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances, Sens. Actuators B Chem., 216, 113, 10.1016/j.snb.2015.04.036
Shi, 2016, Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties, Sens. Actuators B Chem., 230, 736, 10.1016/j.snb.2016.02.134
Wang, 2006, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sens. Actuators B Chem., 113, 320, 10.1016/j.snb.2005.03.011
Kim, 2014, Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer, Sens. Actuators B Chem., 193, 574, 10.1016/j.snb.2013.12.011
Hosseinia, 2015, Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures, Sens. Actuators B Chem., 207, 865, 10.1016/j.snb.2014.10.085
Szilágyi, 2010, Gas sensingselectivity of hexagonal and monoclinic WO3 to H2S, Solid State Sci., 12, 1857, 10.1016/j.solidstatesciences.2010.01.019
Park, 2014, H2S gas sensingproperties of CuO-functionalized WO3 nanowires, Ceram. Int., 40, 11051, 10.1016/j.ceramint.2014.03.120
Ma, 2013, Fe2O3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasen-sitive sensors for low-ppm-level H2S gas, Nanoscale, 5, 895, 10.1039/C2NR33201A
Deng, 2013, Porous Fe2O3 nanospheres-based H2S sensor with fast response, high selectivity andenhanced sensitivity, J. Mater. Chem. A, 1, 12400, 10.1039/c3ta12253k
Calestani, 2010, Growth of ZnO tetrapods for nanostructure-based gas sensors, Sens. Actuators B Chem., 144, 472, 10.1016/j.snb.2009.11.009
Kim, 2011, Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing, J. Phys. Chem. C, 115, 7218, 10.1021/jp110129f
Liu, 2009, Hierarchically porous ZnO with sensitivityand selectivity to H2S derived from biotemplates, Sens. Actuators B Chem., 136, 499, 10.1016/j.snb.2008.10.043
Shewale, 2013, Thickness dependent H2S sensing properties of nanocrystalline ZnO thin films derived by advanced spray pyrolysis, Sens. Actuators B Chem., 177, 695, 10.1016/j.snb.2012.11.076
Jimenez, 2003, Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders, Sens. Actuators B Chem., 93, 475, 10.1016/S0925-4005(03)00198-9
Mickelson, 2012, Low-power, fast, selective nanoparticle-based hydrogen sulfide gas sensor, Appl. Phys. Lett., 100, 173110, 10.1063/1.3703761
Guo, 2015, PEG-20000 assisted hydrothermal synthesis of hierarchical ZnO flowers: structure, growth and gas sensor properties, Physica E, 73, 163, 10.1016/j.physe.2015.05.006
Deng, 2016, Enhanced H2S gas sensing properties of undoped ZnO nanocrystallinefilms from QDs by low-temperature processing, Sens. Actuators B Chem., 224, 153, 10.1016/j.snb.2015.10.022
Balamurugan, 2015, Perovskite hexagonal YMnO3 nanopowder as p-type semiconductorgas sensor for H2S detection, Sens. Actuators B Chem., 221, 857, 10.1016/j.snb.2015.07.018
Chena, 2017, ZnO-nanowire size effect induced ultra-high sensing response to ppb-level H2S, Sens. Actuators B Chem., 240, 264, 10.1016/j.snb.2016.08.120
Navale, 2017, Solution-processed rapid synthesis strategy of Co3O4 for the sensitive and selective detection of H2S, Sens. Actuators B Chem., 245, 524, 10.1016/j.snb.2017.01.195
Patil, 2018, BaTiO3 nanostructures for H2S gas sensor: influence of band-gap, size and shape on sensing mechanism, Vacuum, 146, 445
Tian, 2017, Hierarchical and hollow Fe2O3 nano-boxes derived from metalorganic frameworks with excellent sensitivity to H2S, ACS Appl. Mater. Interfaces, 9, 29669, 10.1021/acsami.7b07069
Duan, 2017, The fabrication of In2O3 toruloid nanotubes and their room temperature gas sensing properties for H2S, Mater. Res. Exp., 4
Shewale, 2013, H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis, Sens. Actuators B Chem., 186, 226, 10.1016/j.snb.2013.05.073
Ma, 2015, Room temperature ppb level H2S detection of a single Sb-doped SnO2 nanoribbon device, Sens. Actuators B Chem., 216, 72, 10.1016/j.snb.2015.04.025
Zhao, 2011, Electrospun Cu-doped ZnO nanofibers for H2S sensing, Sens. Actuators B Chem., 156, 588, 10.1016/j.snb.2011.01.070
Hosseini, 2015, Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures, J. Alloys Compd., 628, 222, 10.1016/j.jallcom.2014.12.163
Woo, 2014, Selective, sensitive, and reversible detection of H2S using Mo-doped ZnO nanowire network sensors, J. Mater. Chem. A, 2, 6412, 10.1039/C4TA00387J
Ouyang, 2012, Facile synthesis and enhanced H2S sensing performances of Fe-doped MoO3 micro-structures, Sens. Actuators B Chem., 169, 17, 10.1016/j.snb.2012.01.042
Chaudhari, 2012, Nanocrystalline chemically modified CdIn2O4 thick films for H2S gas sensor, Thin Solid Films, 520, 4057, 10.1016/j.tsf.2011.08.010
Jagtap, 2008, H2S sensing characteristics of La0.7Pb0.3Fe0.4Ni0.6O3 based nanocrystalline thick film gas sensor, Sens. Actuators B Chem., 131, 290, 10.1016/j.snb.2007.11.021
Liang, 2016, Green and rapid synthesis of 3DFe2(MoO4)3 by microwave irradiation to detect H2S gas, Mater. Lett., 168, 171, 10.1016/j.matlet.2016.01.048
Zhao, 2015, Improving gas-sensing properties of electrospun In2O3 nanotubes by Mg acceptor doping, Sens. Actuators B Chem., 207, 313, 10.1016/j.snb.2014.10.087
Satish, 2009, H2S gas sensitive indium-doped ZnO thin films: preparation and characterization, Sens. Actuators B Chem., 143, 164, 10.1016/j.snb.2009.08.056
Wang, 2007, H2S sensing characteristics of Pt-doped α-Fe2O3 thick film sensors, Sens. Actuators B Chem., 125, 79, 10.1016/j.snb.2007.01.037
Wang, 2007, Synthesis and characterization of Pd-doped α-Fe2O3 H2S sensor with low power consumption, Mater. Sci. Eng. B, 140, 98, 10.1016/j.mseb.2007.04.004
Wang, 2008, Low-temperature H2S sensors based on Ag-doped Fe2O3 nanoparticles, Sens. Actuators B Chem., 131, 183, 10.1016/j.snb.2007.11.002
Ramgir, 2005, A room temperature nitric oxide sensor actualized form Ru-doped SnO2 nanowires, Sens. Actuators B Chem., 107, 708, 10.1016/j.snb.2004.12.073
Kruefua, 2015, Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods, Sens. Actuators B Chem., 215, 630, 10.1016/j.snb.2015.03.037
Balouria, 2015, Enhanced H2S sensing characteristics of Au modified Fe2O3 thin films, Sens. Actuators B Chem., 219, 125, 10.1016/j.snb.2015.04.113
Ramgir, 2013, Room temperature H2S sensor based on Au modified ZnO nanowires, Sens. Actuators B Chem., 186, 718, 10.1016/j.snb.2013.06.070
Niranjan, 2003, High H2S-sensitive copper doped tin oxide thin film, Mater. Chem. Phys., 80, 250, 10.1016/S0254-0584(02)00467-4
Niranjan, 2002, A novel hydrogen sulphide room temperature sensor based on copper nanocluster functionalized tin oxide thin films, Sens. Actuators B Chem., 85, 26, 10.1016/S0925-4005(02)00046-1
Pongpaiboonkula, 2016, Enhancement of H2S-sensing performances with Fe-doping in CaCu3Ti4O12 thin films prepared by a sol–gel method, Sens. Actuators B Chem., 224, 118, 10.1016/j.snb.2015.08.113
Datta, 2012, Vacuum deposited WO3 thin films based sub-ppm H2S sensor, Mater. Chem. Phys., 134, 851, 10.1016/j.matchemphys.2012.03.080
Liu, 2014, V-doped In2O3 nanofibers for H2S detection at low temperature, Ceram. Int., 40, 6685, 10.1016/j.ceramint.2013.11.129
Bodade, 2008, Synthesis and characterization of CdO-doped nanocrystalline ZnO:TiO2-based H2S gas sensor, Vacuum, 82, 588, 10.1016/j.vacuum.2007.08.015
Kolhe, 2017, Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties, Phys. B Condens. Matter, 524, 90, 10.1016/j.physb.2017.07.056
Nimbalkar, 2017, Synthesis of highly selective and sensitive Cu-doped ZnO thin film sensor for detection of H2S gas, Mater. Sci. Semicond. Proc., 71, 332, 10.1016/j.mssp.2017.08.022
Guo, 2018, Enhanced hydrogen sulfide sensing properties of Pt-functionalized α-Fe2O3 nanowires prepared by one-step electrospinning, Sens. Actuators B Chem., 255, 1015, 10.1016/j.snb.2017.07.055
Yan, 2017, Room temperature H2S gas sensor based on Au-doped ZnFe2O4 yolk-shell microsphere, Anal. Sci., 33, 945, 10.2116/analsci.33.945
Malek Alaie, 2015, Selective hydrogen sulfide(H2S) sensorsbased on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide, Mater. Sci. Semicond. Process., 38, 93, 10.1016/j.mssp.2015.03.034
Wang, 2012, Synthesis and enhanced H2S gas sensing properties of MoO3/CuO p-n junction nanocomposite, Sens. Actuators B Chem., 171–172, 256, 10.1016/j.snb.2012.03.058
Choi, 2014, Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers fordiagnosis of diseases, ACS Appl. Mater. Interfaces, 6, 9061, 10.1021/am501394r
Verma, 2010, Comparison of H2S sensing response of hetero-structure sensor (CuO-SnO2) prepared by rf and pulsed laser deposition, Thin Solid Films, 518, e181, 10.1016/j.tsf.2010.03.162
Hwang, 2009, Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO, Sens. Actuators B Chem., 142, 105, 10.1016/j.snb.2009.07.052
Kumar, 2009, Copper doped SnO2 nanowires as highly sensitive H2S sensor, Sens. Actuators B Chem., 138, 587, 10.1016/j.snb.2009.02.053
Ghimbeu, 2008, Electrostatic sprayed SnO2 and Cu-doped SnO2 films for H2S detection, Sens. Actuators B Chem., 133, 694, 10.1016/j.snb.2008.04.007
Li, 2014, Fe3+ facilitating the response of NiO towards H2S, RSC Adv., 4, 14201, 10.1039/C4RA00182F
Patil, 2006, Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature, Sens. Actuators B Chem., 120, 316, 10.1016/j.snb.2006.02.022
Lee, 2005, H2S microgas sensor fabricated by thermal oxidation of Cu/Sn double layer, Sens. Actuators B Chem., 108, 84, 10.1016/j.snb.2005.01.037
Kong, 2005, High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature, Sens. Actuators B Chem., 105, 449, 10.1016/j.snb.2004.07.001
Wagh, 2004, Surface cupricated SnO2–ZnO thick films as a H2S gas sensor, Mater. Chem. Phys., 84, 228, 10.1016/S0254-0584(03)00232-3
Chowdhuri, 2010, Contribution of adsorbed oxygen and interfacial space charge for enhanced response of SnO2 sensors having CuO catalyst for H2S gas, Sens. Actuators B Chem., 145, 155, 10.1016/j.snb.2009.11.050
Katti, 2003, Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation, Sens. Actuators B Chem., 96, 245, 10.1016/S0925-4005(03)00532-X
Zhou, 2003, Study on sensing mechanism of CuO-SnO2 gas sensors, Mater. Sci. Eng. B, 99, 44, 10.1016/S0921-5107(02)00501-9
Yu, 2012, Synthesis and H2S gas sensing properties of cage-like MoO3/ZnO composite, Sens. Actuators B Chem., 171–172
Yang, 2016, A pulse-driven sensor based on ordered mesoporous Ag2O/SnO2 with improved H2S-sensing performance, Sens. Actuators B Chem., 228, 529, 10.1016/j.snb.2016.01.065
Khanna, 2003, CuO-doped SnO2 thin films as hydrogen sulphide gas sensor, Appl. Phys. Lett., 82, 4388, 10.1063/1.1584071
Verma, 2012, A highly sensitive SnO2–CuO multilayered sensor structure for detection of H2S gas, Sens. Actuators B. Chem., 166–167, 378, 10.1016/j.snb.2012.02.076
Fu, 2013, CuS-doped CuO nanoparticles sensor for detection of H2S and NH3 at room temperature, Electrochim. Acta, 112, 230, 10.1016/j.electacta.2013.08.168
Yuanda, 2001, Thin film sensors of SnO2-CuO-SnO2 sandwich structure to H2S, Sens. Actuators B Chem., 79, 187, 10.1016/S0925-4005(01)00873-5
Vasiliev, 1998, CuO/SnO2 thin film heterostructures as chemical sensors to H2S, Sens. Actuators B Chem., 50, 186, 10.1016/S0925-4005(98)00235-4
Rumyantseva, 1996, Influence of copper on sensor properties of tin dioxide films in H2S, Mater. Sci. Eng. B, 41, 228, 10.1016/S0921-5107(96)01601-7
Bai, 2015, Synthesis of MoO3/reduced grapheneoxide hybrids and mechanism of enhancing H2S sensing performances, Sens. Actuators B Chem., 216, 113, 10.1016/j.snb.2015.04.036
Geng, 2010, Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S, Synth. Met., 160, 1708, 10.1016/j.synthmet.2010.06.005
Kapsea, 2008, Nanocrystalline In2O3-based H2S sensors operable at low temperatures, Talanta, 76, 610, 10.1016/j.talanta.2008.03.050
Choi, 2014, Selective detectionof acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets, ACS Appl. Mater. Interfaces, 6, 2588, 10.1021/am405088q
Liang, 2015, Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating, Sens. Actuators B Chem., 209, 934, 10.1016/j.snb.2014.11.130
Chowdhuri, 2004, Response speed of SnO2-based H2S gas sensors with CuO nanoparticles, Appl. Phys. Lett., 84, 1181, 10.1063/1.1646760
Yu, 2016, Low concentration H2S detection of CdO-decorated hierarchically mesoporous NiO nanofilm with wrinkle structure, Sens. Actuators B Chem., 230, 706, 10.1016/j.snb.2016.02.128
Datta, 2012, Selective H2S sensing characteristics of hydrothermally grown ZnO-nanowires network tailored by ultrathin CuO layers, Sens. Actuators B Chem., 394–401, 166
Kim, 2012, One-pot hydrothermal synthesis of CuO-ZnO composite hollow spheres for selective H2S detection, Sens. Actuators B Chem., 168, 83, 10.1016/j.snb.2012.01.045
Meng, 2013, Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature, Sens. Actuators B Chem., 182, 197, 10.1016/j.snb.2013.02.112
Xue, 2008, Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods, J. Phys. Chem. C, 112, 12157, 10.1021/jp8037818
Yang, 2017, Hierarchical NiO cube/nitrogen-doped reduced graphene oxide composite with enhanced H2S sensing properties at low temperature, ACS Appl. Mater. Interfaces, 9, 26293, 10.1021/acsami.7b04969
Yang, 2018, Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance, Ceram. Int., 44, 1078, 10.1016/j.ceramint.2017.10.052
Kaura, 2017, RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature, Sens. Actuator B, 242, 389, 10.1016/j.snb.2016.11.054
Li, 2018, Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection, Sens. Actuator B, 254, 834, 10.1016/j.snb.2017.06.110
Balamurugan, 2017, Enhanced H2S sensing performance of a p-type semiconducting PdO-NiO nanoscale heteromixture, Appl. Surf. Sci., 420, 638, 10.1016/j.apsusc.2017.05.166
Ashori, 2014, Adsorption of H2S on carbonaceous materials of different dimensionality, Int. J. Hydrogen Energy, 39, 6610, 10.1016/j.ijhydene.2014.02.004
Doyle, 2001
Li, 2005, A simple method for selective immobilization of silver nanoparticles, Appl. Surf. Sci., 250, 109, 10.1016/j.apsusc.2004.12.039
Liu, 2015, Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite, Fuel, 157, 183, 10.1016/j.fuel.2015.05.003
Huang, 2015, Synthesis and characterization of γ-Fe2O3 for H2S removal at Low temperature, Ind. Eng. Chem. Res., 34, 8469, 10.1021/acs.iecr.5b01398
Afzal, 2012, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sens. Actuators B Chem., 171–172, 25, 10.1016/j.snb.2012.05.026
Barsan, 1999, Fundamental and pratical aspects in the design of nanoscaled SnO2 gas sensors: a status report, Fresenius J. Anal. Chem., 365, 287, 10.1007/s002160051490
Franke, 2006, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?, Small, 2, 36, 10.1002/smll.200500261
Katoch, 2015, Importance of the nanograin size on the H2S-sensing properties of ZnO–CuO composite nanofibers, Sens. Actuators B Chem., 214, 111, 10.1016/j.snb.2015.03.012
Chu, 2006, Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method, Sens. Actuators B Chem., 120, 177, 10.1016/j.snb.2006.02.008
Mohammadi-Manesh, 2015, Cu- and CuO-decorated graphene as a nanosensor for H2S detection at room temperature, Surf. Sci., 636, 36, 10.1016/j.susc.2015.02.002
Choi, 2014, Dual functional sensing mechanism in SnO2/ZnO core shell nanowires, ACS Appl. Mater. Interfaces, 6, 8281, 10.1021/am501107c
Somacescu, 2014, Mesoporous Sn0. 9-xIn0.1Cux(I)O2- δ gas sensors with selectivity to H2S working under humid air conditions, Microporous Mesoporous Mater., 197, 63, 10.1016/j.micromeso.2014.06.001
Hien, 2014, H2S-sensing properties of Cu2O submicron-sized rods and trees synthesized by radio-frequency magnetron sputtering, Sens. Actuators B Chem., 202, 330, 10.1016/j.snb.2014.05.070
Huang, 2015, A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature, Appl. Surf. Sci., 351, 1025, 10.1016/j.apsusc.2015.06.053
Sarfraz, 2012, Printed copper acetate based H2S sensor on paper substrate, Sens. Actuators B Chem., 173, 868, 10.1016/j.snb.2012.08.008
Wang, 2016, Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-inducedenhanced sensing mechanism, Sens. Actuators B Chem., 228, 74, 10.1016/j.snb.2016.01.002
Lee, 2014, The stability,sensitivity and response transients of ZnO, SnO2 and WO3 sensors underacetone, toluene and H2S environments, Sens. Actuators B Chem., 197, 300, 10.1016/j.snb.2014.02.043
Min, 2010, Microwave-assistant synthesis of ordered CuO micro-structures on Cu substrate, Appl. Surf. Sci., 257, 132, 10.1016/j.apsusc.2010.06.049
Choi, 2013, Electrospun nanofibers of CuO-SnO2 nanocomposite as semiconductor gas sensors for H2S detection, Sens. Actuators B Chem., 176, 585, 10.1016/j.snb.2012.09.035
Chen, 2008, H2S detection by vertically aligned CuO nanowire array sensors, J. Phys. Chem. C, 112, 16017, 10.1021/jp805919t
Ramgir, 2010, Nanowires based sensors, Small, 6, 1705, 10.1002/smll.201000972
Ramgir, 2010, Reactive VLS and the reversible switching between VS and VLS growth modes for ZnO nanowire growth, J. Phys. Chem. C, 114, 10323, 10.1021/jp909377b
Maekawa, 1991, Sensing behavior of CuO-loaded SnO2 element for H2S detection, Chem. Lett., 4, 575, 10.1246/cl.1991.575
Choi, 2013, Electrospun nanofibers of CuO/SnO2 nanocomposite as semiconductor gas sensors for H2S detection, Sens. Actuators B Chem., 176, 585, 10.1016/j.snb.2012.09.035
Park, 2016, Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor, Mater. Res. Bull., 82, 130, 10.1016/j.materresbull.2016.02.011
Arya, 2012, Recent advances in ZnO nanostructures and thin films for biosensor applications: review, Anal. Chim. Acta, 737, 1, 10.1016/j.aca.2012.05.048
Mirzaei, 2016, ZnO-capped nanorod gas sensors, Ceram. Int., 42, 6187, 10.1016/j.ceramint.2015.12.179
Brinzari, 2001, Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control, Thin Solid Films, 391, 167, 10.1016/S0040-6090(01)00978-6
Kapse, 2009, H2S sensing properties of La-doped nanocrystalline In2O3, Vacuum, 83, 346, 10.1016/j.vacuum.2008.05.027
Deng, 2016, Improving the fast discharge performance of high-voltage LiNi0.5Mn1.5O4 spinel by Cu2+, Al3+, Ti4+ tri-doping, J. Alloys Compd., 677, 18, 10.1016/j.jallcom.2016.03.256
Saris, 1994, Is Zn2+ transported by the mitochondrial calcium uniporter?, FEBS Lett., 356, 195, 10.1016/0014-5793(94)01256-3
Wang, 2012, CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection, Mater. Sci. Eng. C, 32, 2079, 10.1016/j.msec.2012.05.042
Guo, 2016, High-response H2S sensor based on ZnO/SnO2 heterogeneous nanospheres, RSC Adv., 6, 15048, 10.1039/C5RA22187K
Das, 2014, SnO2: a comprehensive review on structures and gas sensors, Prog. Mater. Sci., 66, 112, 10.1016/j.pmatsci.2014.06.003
Kwon, 2017, Attachment of Co3O4 layer to SnO2 nanowires for enhanced gas sensing properties, Sens. Actuators B Chem., 239, 180, 10.1016/j.snb.2016.07.177
Kim, 2012, Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts, Curr. Appl. Phys., 12, 1125, 10.1016/j.cap.2012.02.006
Huang, 2009, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures, Sensors, 9, 9903, 10.3390/s91209903
Choi, 2012, H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers, Sens. Actuators B Chem., 169, 54, 10.1016/j.snb.2012.02.054
Liu, 2009, Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors, Sens. Actuators B Chem., 140, 190, 10.1016/j.snb.2009.04.027
Fu, 2016, Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor, J. Mater. Chem. A, 4, 1390, 10.1039/C5TA09190J
Liu, 2011, Nanocrystalline In2O3-SnO2 thick films for low-temperature hydrogen sulfide detection, Ceram. Interfaces, 37, 1889, 10.1016/j.ceramint.2011.02.005
Errana, 2012
Long, 2015, Synthesis of WO3 and its gas sensing: a review, J. Mater. Sci. Mater. Electr., 26, 4698, 10.1007/s10854-015-2896-4
Ramgir, 2013, Selective H2S sensing characteristics of CuO modified WO3 thin films, Sens. Actuators B Chem., 188, 525, 10.1016/j.snb.2013.07.052
Shen, 2014, Microstructure and enhanced H2S sensing properties of Pt-loaded WO3 thin films, Sens. Actuators B Chem., 193, 273, 10.1016/j.snb.2013.11.106
Lu, 2007, In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation, J. Phys. Chem. C, 111, 7676, 10.1021/jp070973m
Yuan, 2013, High-performance NO2 sensorsbased on chemically modified graphene, Adv. Mater., 25, 766, 10.1002/adma.201203172
Hu, 2014, Ultrafast and sensitive room temperature NH3 gas sensors basedon chemically reduced graphene oxide, Nanotechnology, 25, 1, 10.1088/0957-4484/25/2/025502
Su, 2009, Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubesand their gas sensing properties, Sens. Actuators B Chem., 139, 488, 10.1016/j.snb.2009.03.051
Basu, 2012, Recent developments on graphene and graphene oxide based solid state gas sensors, Sens. Actuators B Chem., 173, 1, 10.1016/j.snb.2012.07.092
Su, 2016, NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature, Sens. Actuators B Chem., 223, 202, 10.1016/j.snb.2015.09.091
Meng, 2015, Graphene-based hybrids for chemiresistive gas sensors, TrAC Trends Anal. Chem., 68, 37, 10.1016/j.trac.2015.02.008
Hu, 2017, Synthesis and gas sensing properties of molybdenum oxide modified tungsten oxide microstructures for ppb-level hydrogen sulphide detection, RSC Adv., 7, 28542, 10.1039/C7RA03864J
Yin, 2014, Microwave-assisted growth of In2O3 nanoparticles on WO3 nanoplates to improve H2S-sensing performance, J. Mater. Chem. A, 2, 18867, 10.1039/C4TA03426K
Vomiero, 2007, In2O3 nanowires for gas sensors: morphology and sensing characterisation, Thin Solid Films, 515, 8356, 10.1016/j.tsf.2007.03.034
Kaur, 2008, Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers, Sens. Actuators B Chem., 133, 456, 10.1016/j.snb.2008.03.003
Tu, 2010, H2S-sensing properties of Pt-doped mesoporous indium oxide, Appl. Surf. Sci., 256, 5051, 10.1016/j.apsusc.2010.03.055
Mirzaei, 2016, Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol-gel method, Ceram. Int., 42, 6136, 10.1016/j.ceramint.2015.12.176
Chaudhari, 2006, Characterization of nanosized TiO2 based H2S gas sensor, J. Mater. Sci., 41, 4860, 10.1007/s10853-006-0042-7
Chen, 2012, A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature, Ceram. Int., 38, 503, 10.1016/j.ceramint.2011.07.035
Sun, 2016, Synthesis of TiO2 nanorods decorated with NiO nanoparticles and their acetone sensing properties, Ceram. Int., 42, 1063, 10.1016/j.ceramint.2015.09.031
Ma, 2016, Improved H2S sensing properties of Ag/TiO2 nanofibers, Ceram. Int., 42, 2041, 10.1016/j.ceramint.2015.09.034
Tong, 2013, In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors, Int. J Hydrogen Energy, 38, 12090, 10.1016/j.ijhydene.2013.06.120
Balouria, 2013, Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films, Sens. Actuators B Chem., 176, 38, 10.1016/j.snb.2012.08.064
Bai, 2014, Intrinsic characteristic and mechanism in enhancing H2S sensing of Cd-doped MoO3 nanobelts, Sens. Actuators B Chem., 204, 754, 10.1016/j.snb.2014.08.017
Miyauchi, 2010, Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices, Ceram. Int., 46, 1529
Geng, 2008, Synthesis of polyhedral ZnSnO3 microcrystals with controlled exposed facets and their selective gassensing properties, Small, 4, 1337, 10.1002/smll.200701177
Zeng, 2009, Synthesis and gas-sensing properties of ZnSnO3 cubic nanocages and nanoskeletons, Sens. Actuators B Chem., 143, 449, 10.1016/j.snb.2009.07.021
Jin, 2012, Highly sensitive H2S gas sensors based on CuO-coated ZnSnO3 nanorods synthesized by thermal evaporation, Ceram. Int., 38, 5973, 10.1016/j.ceramint.2012.04.050
Liu, 2016, Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance, Sci. Rep., 6, 27373, 10.1038/srep27373
Supothina, 2014, Hydrothermal synthesis of K2W4O13 nanowire with high H2S gas sensitivity, Microelectr. Eng., 126, 88, 10.1016/j.mee.2014.06.015
Shuk, 1993, Electrodes for oxygen sensors based on rare earth manganites orcobaltites, Sens. Actuators B Chem., 16, 401, 10.1016/0925-4005(93)85218-Y
Joanni, 2008, P-type semiconducting gassensing behavior of nanoporous rf sputtered CaCu3Ti4O12 thin films, Appl. Phys. Lett., 92, 132110, 10.1063/1.2905810
Ponce, 2015, Electrical behavior analysis of n-type CaCu3Ti4O12 thick films exposed to different atmospheres, J. Eur. Ceram. Soc., 35, 153, 10.1016/j.jeurceramsoc.2014.08.041
Boontum, 2018, H2S sensing characteristics of Ni-doped CaCu3Ti4O12 films synthesized by a sol-gel method, Sens. Actuators B Chem., 260, 877, 10.1016/j.snb.2018.01.090
Natkaeo, 2018, Highly selective sub-10 ppm H2S gas sensors based on Ag-doped CaCu3Ti4O12 films, Sens. Actuators B Chem., 260, 571, 10.1016/j.snb.2017.12.134
Chu, 2004, H2S-sensing characteristics of Cd2Sb2O7 thick film sensor prepared by co-precipitation method, Mater. Sci. Eng. B, 110, 103, 10.1016/j.mseb.2004.01.024
Huang, 2017, Detecting low concentration of H2S gas by BaTiO3 nanoparticle-based sensors, Sens. Actuators B Chem., 238, 16, 10.1016/j.snb.2016.06.172
Stanoiua, 2018, H2S selective sensitivity of Cu doped BaSrTiO3 under operando conditions and the associated sensing mechanism, Sens. Actuators B Chem., 264, 327, 10.1016/j.snb.2018.03.013
Ayesh, 2017, Spinel ferrite nanoparticles for H2S gas sensor, Appl. Phys. A, 123, 682, 10.1007/s00339-017-1305-7
Haijaa, 2017, Characterization of H2S gas sensor based on CuFe2O4 nanoparticles, J. Alloys Compd., 690, 461, 10.1016/j.jallcom.2016.08.174
Hu, 2018, Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor, Sens. Actuators B Chem., 264, 139, 10.1016/j.snb.2018.02.110
Gao, 2017, Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets, Sens. Actuators B Chem., 246, 662, 10.1016/j.snb.2017.02.100
Kapse, 2009, Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: a novel material for H2S sensing, Mater. Chem. Phys., 113, 638, 10.1016/j.matchemphys.2008.08.017
Liu, 2004, Hydrogen sulfide sensing properties of NiFe2O4 nanopowder doped with noble metals, Sens. Actuators B Chem., 102, 148, 10.1016/j.snb.2004.04.014
Stanoiu, 2017, Sensors based on mesoporous SnO2-CuWO4 with high selective sensitivity to H2S at low operating temperature, J. Hazard. Mater., 331, 150, 10.1016/j.jhazmat.2017.02.038
Cui, 2017, In-situ deposited flower-like Bi2MoO6 microspheres thin film based sensors for highly selective detection of ppb-level H2S at low temperature, Sens. Actuators B Chem., 247, 681, 10.1016/j.snb.2017.03.100
Chen, 2013, Porous iron molybdate nanorods: in situ diffusion synthesis and low-temperature H2S gas sensing, ACS Appl. Mater. Interfaces, 5, 3267, 10.1021/am400324g