New method to selectively determine hydrogen sulfide concentrations using CuO layers
Tài liệu tham khảo
Beauchamp, 1984, A critical review of the literature on hydrogen sulfide toxicity, Crit. Rev. Toxicol., 13, 25, 10.3109/10408448409029321
1985, 9
Werner, 2013, Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt volcano, Alaska, J. Volcanol. Geoth. Res., 259, 270, 10.1016/j.jvolgeores.2012.04.012
Hammer, 2002, Natural gas, 739
Sato, 2002, Analysis of malodorous substances of human feces, J. Health Sci., 48, 179, 10.1248/jhs.48.179
Ho, 2013, Elimination of high concentration hydrogen sulfide and biogas purification by chemical–biological process, Chemosphere, 92, 1396, 10.1016/j.chemosphere.2013.05.054
Chen, 2008, H2S trace concentration measurements using off-axis integrated cavity output spectroscopy in the near-infrared, Appl. Phys. B, 90, 311, 10.1007/s00340-007-2858-5
Yu, 2002, Electrochemical H2S sensor with H2SO4 pre-treated Nafion membrane as solid polymer electrolyte, Sens. Actuators B: Chem., 86, 259, 10.1016/S0925-4005(02)00200-9
Tamaki, 1992, CuO–SnO2 element for highly sensitive and selective detection of H2S, Sens. Actuators B: Chem., 8, 197, 10.1016/0925-4005(92)80216-K
Dawson, 1995, Description and characterization of a hydrogen sulfide gas sensor based on Cr2−yTiyO3+x, Sens. Actuators B: Chem., 26, 76, 10.1016/0925-4005(94)01560-5
Pandey, 2012, A review of sensor-based methods for monitoring hydrogen sulfide, Trends Anal. Chem., 32, 87, 10.1016/j.trac.2011.08.008
Kim, 2012, H2S gas sensing properties of bare and Pd-functionalized CuO nanorods, Sens. Actuators B: Chem., 161, 594, 10.1016/j.snb.2011.11.006
Steinhauer, 2013, Gas sensing properties of novel CuO nanowire devices, Sens. Actuators B: Chem., 187, 50, 10.1016/j.snb.2012.09.034
Chen, 2008, H2S detection by vertically aligned CuO nanowire array sensors, J. Phys. Chem. C, 112, 16017, 10.1021/jp805919t
Verma, 2010, Comparison of H2S sensing response of hetero-structure sensor (CuO–SnO2) prepared by RF sputtering and pulsed laser deposition, Thin Solid Films, 518, 181, 10.1016/j.tsf.2010.03.162
Vasiliev, 1998, CuO/SnO2 thin film heterostructures as chemical sensors to H2S, Sens. Actuators B: Chem., 50, 186, 10.1016/S0925-4005(98)00235-4
Zhang, 2014, Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing, ACS Appl. Mater. Interfaces, 6, 14975, 10.1021/am502671s
Kong, 2005, High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature, Sens. Actuators B: Chem., 105, 449, 10.1016/j.snb.2004.07.001
Kim, 2012, One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection, Sens. Actuators B: Chem., 168, 83, 10.1016/j.snb.2012.01.045
Xu, 2014, CuO–ZnO micro/nanoporous array-film-based chemosensors: new sensing properties to H2S, Chem. Eur. J., 20, 6040, 10.1002/chem.201304722
Nie, 2014, The conversion of pn-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H2S sensor, Nanotechnology, 25, 265501, 10.1088/0957-4484/25/26/265501
Ramgir, 2010, Sub-ppm H2S sensing at room temperature using CuO thin films, Sens. Actuators B: Chem., 151, 90, 10.1016/j.snb.2010.09.043
Sauerwald, 2013, H2S detection utilizing percolation effects in copper oxide, 656
Kneer, 2014, Specific, trace gas induced phase transition in copper(II)oxide for highly selective gas sensing, Appl. Phys. Lett., 105, 073509, 10.1063/1.4893736
http://www.retsch.com/products/milling/ball-mills/planetary-ball-mill-pm-100/function-features/ (11.02.2015).
http://www.fujifilmusa.com/shared/bin/PDS00085-DMP2831.pdf (11.02.2015).
Walden, 2015, Micromachined hotplate platform for the investigation of ink-jet printed, functionalized metal-oxide nano particles, J. Microelectromech. Syst., 10.1109/JMEMS.2015.2399696
http://hitachi-hta.com/sites/default/files/technotes/Hitachi_4700_cryo.pdf (11.02.2015).
Kneer, 2014, Apparatus to characterize gas sensor response under real-world conditions in the lab, Rev. Sci. Instrum., 85, 055006, 10.1063/1.4878717
Holzwarth, 2011, The Scherrer equation versus the ‘Debye–Scherrer equation’, Nat. Nanotechnol., 6, 534, 10.1038/nnano.2011.145
Galtayries, 1995, XPS and ISS studies on the interaction of H2S with polycrystalline Cu, Cu2O and CuO surfaces, Surf. Interface Anal., 23, 171, 10.1002/sia.740230308
Hoa, 2010, Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection, Sens. Actuators B: Chem., 146, 239, 10.1016/j.snb.2010.02.045
Klonoff-Cohen, 2005, Outdoor carbon monoxide, nitrogen dioxide, and sudden infant death syndrome, Arch. Dis. Child., 90, 750, 10.1136/adc.2004.057091
Hansen, 2010, Transport, analyte detection and opto-electronic response of p-type CuO nanowires, J. Phys. Chem. C, 114, 2440, 10.1021/jp908850j
Yamazoe, 2008, Theory of power laws for semiconductor gas sensors, Sens. Actuators B: Chem., 128, 566, 10.1016/j.snb.2007.07.036
Kim, 2012, Selective detection of NO2 using Cr-doped CuO nanorods, Sensors, 12, 8013, 10.3390/s120608013
Tomchenko, 2003, Semiconducting metal oxide sensor array for the selective detection of combustion gases, Sens. Actuators B: Chem., 93, 126, 10.1016/S0925-4005(03)00240-5
Macken, 2000, Testing of the CuO/Al2O3 catalyst–sorbent in extended operation for the simultaneous removal of NOx and SO2 from flue gases, Ind. Eng. Chem. Res., 39, 3868, 10.1021/ie000342d
Kiel, 1991, Performance of silica-supported copper oxide sorbents for SOx/NOx-removal from flue gas I. Sulphur dioxide absorption and regeneration kinetics, Appl. Catal. B: Environ., 1, 13, 10.1016/0926-3373(92)80004-J
Kent, 1977, Infrared spectroscopic investigation of the adsorption and reactions of SO2 on CuO, Ind. Eng. Chem. Fundam., 16, 443, 10.1021/i160064a009
Bukun, 2005, Chemisorption and electrochemical reactions of SO2 on modified SnO2 electrodes, Sens. Actuators B: Chem., 106, 153, 10.1016/j.snb.2004.05.065
Girardin, 1997, Modelling of SO2 detection by tin dioxide gas sensors, Sens. Actuators B: Chem., 43, 147, 10.1016/S0925-4005(97)00149-4
Das, 2008, Vanadium doped tin dioxide as a novel sulfur dioxide sensor, Talanta, 75, 385, 10.1016/j.talanta.2007.11.010
Lee, 2011, A novel tin oxide-based recoverable thick film SO2 gas sensor promoted with magnesium and vanadium oxides, Sens. Actuators B: Chem., 160, 1328, 10.1016/j.snb.2011.09.070
Wetchakun, 2011, Semiconducting metal oxides as sensors for environmentally hazardous gases, Sens. Actuators B: Chem., 160, 580, 10.1016/j.snb.2011.08.032
Shimizu, 2001, Improvement of SO2 sensing properties of WO3 by noble metal loading, Sens. Actuators B: Chem., 77, 35, 10.1016/S0925-4005(01)00669-4
Stankova, 2004, Detection of SO2 and H2S in CO2 stream by means of WO3-based micro-hotplate sensors, Sens. Actuators B: Chem., 102, 219, 10.1016/j.snb.2004.04.030
Kruefu, 2015, Effects of niobium-loading on sulfur dioxide gas-sensing characteristics of hydrothermally prepared tungsten oxide thick film, J. Nanomater., 2015, 820509, 10.1155/2015/820509