Attachment of Co3O4 layer to SnO2 nanowires for enhanced gas sensing properties
Tài liệu tham khảo
Penner, 2012, Chemical sensing with nanowires, Annu. Rev. Anal. Chem., 5, 461, 10.1146/annurev-anchem-062011-143007
Cui, 2001, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289, 10.1126/science.1062711
Rout, 2007, Ammonia sensors based on metal oxide nanostructures, Nanotechnology, 18, 205504, 10.1088/0957-4484/18/20/205504
Skucha, 2010, Palladium/silicon nanowire Schottky barrier-based hydrogen sensors, Sens. Actuators B: Chem., 145, 232, 10.1016/j.snb.2009.11.067
Xu, 2000, Oxygen sensors based on semiconducting metal oxides: an overview, Sens. Actuators B: Chem., 65, 2, 10.1016/S0925-4005(99)00421-9
Lim, 2008, Room temperature hydrogen detection using Pd-coated GaN nanowires, Appl. Phys. Lett., 93, 072109, 10.1063/1.2975173
Vomiero, 2007, In2O3 nanowires for gas sensors: morphology and sensing characterization, Thin Solid Films, 515, 8356, 10.1016/j.tsf.2007.03.034
Woo, 2012, Highly sensitive and selective trimethylamine sensor using one-dimwnsional ZnO-Cr2O3 hetero-nanostructures, Nanotechnology, 23, 245501, 10.1088/0957-4484/23/24/245501
Rai, 2014, Functionalization of ZnO nanorods by CuO nanospikes for gas sensor applications, RSC Adv., 4, 23604, 10.1039/c4ra00078a
Choi, 2012, H2S sesing performance of electrospun CuO-loaded SnO2 nanofibers, Sens. Actuators B: Chem., 169, 54, 10.1016/j.snb.2012.02.054
Choi, 2013, Synthesis and gas sensing performance of ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure, Sens. Actuators B: Chem., 181, 787, 10.1016/j.snb.2013.02.010
Sun, 2013, Bi-functional mechanism of H2S detection using CuO-SnO2 nanowires, J. Mater. Chem. C, 1, 5454, 10.1039/c3tc30987h
Katoch, 2013, An approach to detecting a reducing gas by radial modulation of electron-depleted shells in core-shell nanofibers, J. Mater. Chem. A, 1, 13588, 10.1039/c3ta13087h
Choi, 2014, Dual functional sensing mechanism in SnO2-ZnO core-shell nanowires, ACS Appl. Mater. Interfaces, 6, 8281, 10.1021/am501107c
Katoch, 2014, Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core-shell nanofiber, Nanotechnology, 25, 175501, 10.1088/0957-4484/25/17/175501
Park, 2014, Hydrogen sensing properties of multiple networked Nb2O5/ZnO core-shell nanorod sensors, Sens. Actuators B: Chem., 202, 840, 10.1016/j.snb.2014.06.028
Kaur, 2007, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature, Sens. Actuators B: Chem., 123, 1090, 10.1016/j.snb.2006.11.031
Yoon, 2012, Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers, Sens. Actuators B: Chem., 161, 570, 10.1016/j.snb.2011.11.002
Wen, 2013, Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor, Sens. Actuators B: Chem., 186, 172, 10.1016/j.snb.2013.05.093
Nguyen, 2011, Meso- and macroporous Co3O4 nanorods for effective VOC gas sensors, J. Phys. Chem. C, 115, 8466, 10.1021/jp1116189
Patil, 2010, Highly sensitive and fast responding CO sensor based on Co3O4 nanorods, Talanta, 81, 37, 10.1016/j.talanta.2009.11.034
Li, 2005, Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater., 15, 851, 10.1002/adfm.200400429
Xu, 2015, Shape-regulated synthesis of cobalt oxide and its gas-sensing property, J. Alloys Compd., 619, 361, 10.1016/j.jallcom.2014.09.020
Lin, 2016, J. Mater. Sci.: Mater. Electron., 27, 2086
Dang, 2014, Heterostructured Co3O4/PEI-CNTs composite: fanrication, characterization and CO gas sensors at room temperature, J. Mater. Chem. A, 2, 4558, 10.1039/C3TA15019D
Rahman, 2013, Acetone sensor based on solvothermally prepared ZnO doped with Co3O4 nanorods, Microchim. Acta, 180, 675, 10.1007/s00604-013-0978-7
Chen, 2013, Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors, Sens. Actuators B: Chem., 188, 902, 10.1016/j.snb.2013.08.004
Liang, 2013, Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co3O4/n-TiO2 heterojunction synthesized at low temperature, Nanoscale, 5, 10916, 10.1039/c3nr03616b
Na, 2011, Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor, Chem. Commun., 47, 5148, 10.1039/c0cc05256f
Katoch, 2014, Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core-shell nanofiber, Nanotechnology, 25, 175501, 10.1088/0957-4484/25/17/175501
Jeong, 2016, Co3O4-SnO2 hollow heteronanostructures: facile control of gas selectivity by compositional tuning of sensing materials via galvanic replacement, ACS Appl. Mater. Interfaces, 8, 7877, 10.1021/acsami.6b00216
Park, 2016, Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor, Sens. Actuators B: Chem., 222, 1193, 10.1016/j.snb.2015.08.006
Choi, 2004, Sensing properties of SnO2-Co3O4 composites to CO and H2, Sens. Actuators B: Chem., 98, 166, 10.1016/j.snb.2003.09.033
Huang, 2010, Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors, Nanoscale, 2, 1203, 10.1039/c0nr00159g
Kim, 2010, Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles, Nanotechnology, 2, 415502, 10.1088/0957-4484/21/41/415502
Sysoev, 2009, Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films, Sens. Actuators B: Chem., 139, 699, 10.1016/j.snb.2009.03.065
Leo, 1999, Sprayed SnO2 thin films for NO2 sensors, Sens. Actuators B: Chem., 58, 370, 10.1016/S0925-4005(99)00098-2
Kim, 2011, Enhanced NO2 sensing characteristics of Pd-functionalized networked In2O3 nanowires, J. Alloys Compd., 509, 9171, 10.1016/j.jallcom.2011.06.104
Shishiyanu, 2006, Novel NO2 gas sensor based on cuprous oxide thin films, Sens. Actuators B: Chem., 113, 468, 10.1016/j.snb.2005.03.061
Kim, 2007, Controlled growth of SnO2 nanorods by thermal evaporation of Sn powers, J. Korean Phys. Soc., 51, 198, 10.3938/jkps.51.198
Kim, 2005, Synthesis of tin-oxide one-dimensional nanomaterials and their characteristics, J. Korean Phys. Soc., 47, 516
Park, 2011, Growth kinetics of nanograins in SnO2 fibers and size dependent sensing properties, Sens. Actuators B: Chem., 152, 254, 10.1016/j.snb.2010.12.017
Choi, 2009, Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties, Nanotechnology, 20, 465603, 10.1088/0957-4484/20/46/465603
Park, 2009, Synthesis and gas sensing properties of TiO2–ZnO core‐shell nanofibers, J. Am. Ceram. Soc., 92, 2551, 10.1111/j.1551-2916.2009.03270.x
Kim, 2008, Bi2Sn2O7 nanoparticles attached to SnO2 nanowires and used as catalysts, Chem. Phys. Lett., 456, 193, 10.1016/j.cplett.2008.03.024
Kim, 2007, SiOx-sheathed carbon nanotubes prepared via a sputtering technique, Carbon, 45, 2692, 10.1016/j.carbon.2007.08.032
Ruhland, 1998, Gas-kinetic interactions of nitrous oxides with SnO2 surfaces, Sens. Actuators B: Chem., 50, 85, 10.1016/S0925-4005(98)00160-9
Tamaki, 1989, Adsorption behavior of Co and interfering gases on SnO, Surf. Sci., 221, 183, 10.1016/0039-6028(89)90574-8
Neri, 2007, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors, Sens. Actuators B: Chem., 127, 455, 10.1016/j.snb.2007.04.046
Barreca, 2011, Plasma enhanced-CVD of undoped and fluorine-doped Co3O4 nanosystems for novel gas sensors, Sens. Actuators B: Chem., 160, 79, 10.1016/j.snb.2011.07.016
Kohl, 2000, Function and applications of gas sensors, J. Phys. D: Appl. Phys., 34, R125, 10.1088/0022-3727/34/19/201
Hagen, 1999, 83
Cheng, 2012, Characterizing individual SnO2 nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases, Mater. Chem. Phys., 137, 372, 10.1016/j.matchemphys.2012.09.037
Johnson, 1971, The influence of debye length on the C-V measurement of doping profiles, IEEE Trans. Electron Devices, 18, 965, 10.1109/T-ED.1971.17311
Sze, 1936
Cheng, 1998, Electrical conductivity of Co3O4 films prepared by chemical vapour deposition, Mater. Chem. Phys., 53, 225, 10.1016/S0254-0584(98)00044-3