Attachment of Co3O4 layer to SnO2 nanowires for enhanced gas sensing properties

Earthquake Spectra - Tập 239 - Trang 180-192 - 2017
Yong Jung Kwon1, Han Gil Na1, Sung Yong Kang1, Myung Sik Choi1, Jae Hoon Bang1, Tae Whan Kim2, Ali Mirzaei3, Hyoun Woo Kim1,3
1Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
2Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791, Republic of Korea
3The Research Institute of Industrial Science, Hanyang University, Seoul, 133-791, Republic of Korea

Tài liệu tham khảo

Penner, 2012, Chemical sensing with nanowires, Annu. Rev. Anal. Chem., 5, 461, 10.1146/annurev-anchem-062011-143007 Cui, 2001, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289, 10.1126/science.1062711 Rout, 2007, Ammonia sensors based on metal oxide nanostructures, Nanotechnology, 18, 205504, 10.1088/0957-4484/18/20/205504 Skucha, 2010, Palladium/silicon nanowire Schottky barrier-based hydrogen sensors, Sens. Actuators B: Chem., 145, 232, 10.1016/j.snb.2009.11.067 Xu, 2000, Oxygen sensors based on semiconducting metal oxides: an overview, Sens. Actuators B: Chem., 65, 2, 10.1016/S0925-4005(99)00421-9 Lim, 2008, Room temperature hydrogen detection using Pd-coated GaN nanowires, Appl. Phys. Lett., 93, 072109, 10.1063/1.2975173 Vomiero, 2007, In2O3 nanowires for gas sensors: morphology and sensing characterization, Thin Solid Films, 515, 8356, 10.1016/j.tsf.2007.03.034 Woo, 2012, Highly sensitive and selective trimethylamine sensor using one-dimwnsional ZnO-Cr2O3 hetero-nanostructures, Nanotechnology, 23, 245501, 10.1088/0957-4484/23/24/245501 Rai, 2014, Functionalization of ZnO nanorods by CuO nanospikes for gas sensor applications, RSC Adv., 4, 23604, 10.1039/c4ra00078a Choi, 2012, H2S sesing performance of electrospun CuO-loaded SnO2 nanofibers, Sens. Actuators B: Chem., 169, 54, 10.1016/j.snb.2012.02.054 Choi, 2013, Synthesis and gas sensing performance of ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure, Sens. Actuators B: Chem., 181, 787, 10.1016/j.snb.2013.02.010 Sun, 2013, Bi-functional mechanism of H2S detection using CuO-SnO2 nanowires, J. Mater. Chem. C, 1, 5454, 10.1039/c3tc30987h Katoch, 2013, An approach to detecting a reducing gas by radial modulation of electron-depleted shells in core-shell nanofibers, J. Mater. Chem. A, 1, 13588, 10.1039/c3ta13087h Choi, 2014, Dual functional sensing mechanism in SnO2-ZnO core-shell nanowires, ACS Appl. Mater. Interfaces, 6, 8281, 10.1021/am501107c Katoch, 2014, Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core-shell nanofiber, Nanotechnology, 25, 175501, 10.1088/0957-4484/25/17/175501 Park, 2014, Hydrogen sensing properties of multiple networked Nb2O5/ZnO core-shell nanorod sensors, Sens. Actuators B: Chem., 202, 840, 10.1016/j.snb.2014.06.028 Kaur, 2007, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature, Sens. Actuators B: Chem., 123, 1090, 10.1016/j.snb.2006.11.031 Yoon, 2012, Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers, Sens. Actuators B: Chem., 161, 570, 10.1016/j.snb.2011.11.002 Wen, 2013, Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor, Sens. Actuators B: Chem., 186, 172, 10.1016/j.snb.2013.05.093 Nguyen, 2011, Meso- and macroporous Co3O4 nanorods for effective VOC gas sensors, J. Phys. Chem. C, 115, 8466, 10.1021/jp1116189 Patil, 2010, Highly sensitive and fast responding CO sensor based on Co3O4 nanorods, Talanta, 81, 37, 10.1016/j.talanta.2009.11.034 Li, 2005, Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater., 15, 851, 10.1002/adfm.200400429 Xu, 2015, Shape-regulated synthesis of cobalt oxide and its gas-sensing property, J. Alloys Compd., 619, 361, 10.1016/j.jallcom.2014.09.020 Lin, 2016, J. Mater. Sci.: Mater. Electron., 27, 2086 Dang, 2014, Heterostructured Co3O4/PEI-CNTs composite: fanrication, characterization and CO gas sensors at room temperature, J. Mater. Chem. A, 2, 4558, 10.1039/C3TA15019D Rahman, 2013, Acetone sensor based on solvothermally prepared ZnO doped with Co3O4 nanorods, Microchim. Acta, 180, 675, 10.1007/s00604-013-0978-7 Chen, 2013, Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors, Sens. Actuators B: Chem., 188, 902, 10.1016/j.snb.2013.08.004 Liang, 2013, Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co3O4/n-TiO2 heterojunction synthesized at low temperature, Nanoscale, 5, 10916, 10.1039/c3nr03616b Na, 2011, Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor, Chem. Commun., 47, 5148, 10.1039/c0cc05256f Katoch, 2014, Mechanism and prominent enhancement of sensing ability to reducing gases in p/n core-shell nanofiber, Nanotechnology, 25, 175501, 10.1088/0957-4484/25/17/175501 Jeong, 2016, Co3O4-SnO2 hollow heteronanostructures: facile control of gas selectivity by compositional tuning of sensing materials via galvanic replacement, ACS Appl. Mater. Interfaces, 8, 7877, 10.1021/acsami.6b00216 Park, 2016, Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor, Sens. Actuators B: Chem., 222, 1193, 10.1016/j.snb.2015.08.006 Choi, 2004, Sensing properties of SnO2-Co3O4 composites to CO and H2, Sens. Actuators B: Chem., 98, 166, 10.1016/j.snb.2003.09.033 Huang, 2010, Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors, Nanoscale, 2, 1203, 10.1039/c0nr00159g Kim, 2010, Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles, Nanotechnology, 2, 415502, 10.1088/0957-4484/21/41/415502 Sysoev, 2009, Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films, Sens. Actuators B: Chem., 139, 699, 10.1016/j.snb.2009.03.065 Leo, 1999, Sprayed SnO2 thin films for NO2 sensors, Sens. Actuators B: Chem., 58, 370, 10.1016/S0925-4005(99)00098-2 Kim, 2011, Enhanced NO2 sensing characteristics of Pd-functionalized networked In2O3 nanowires, J. Alloys Compd., 509, 9171, 10.1016/j.jallcom.2011.06.104 Shishiyanu, 2006, Novel NO2 gas sensor based on cuprous oxide thin films, Sens. Actuators B: Chem., 113, 468, 10.1016/j.snb.2005.03.061 Kim, 2007, Controlled growth of SnO2 nanorods by thermal evaporation of Sn powers, J. Korean Phys. Soc., 51, 198, 10.3938/jkps.51.198 Kim, 2005, Synthesis of tin-oxide one-dimensional nanomaterials and their characteristics, J. Korean Phys. Soc., 47, 516 Park, 2011, Growth kinetics of nanograins in SnO2 fibers and size dependent sensing properties, Sens. Actuators B: Chem., 152, 254, 10.1016/j.snb.2010.12.017 Choi, 2009, Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties, Nanotechnology, 20, 465603, 10.1088/0957-4484/20/46/465603 Park, 2009, Synthesis and gas sensing properties of TiO2–ZnO core‐shell nanofibers, J. Am. Ceram. Soc., 92, 2551, 10.1111/j.1551-2916.2009.03270.x Kim, 2008, Bi2Sn2O7 nanoparticles attached to SnO2 nanowires and used as catalysts, Chem. Phys. Lett., 456, 193, 10.1016/j.cplett.2008.03.024 Kim, 2007, SiOx-sheathed carbon nanotubes prepared via a sputtering technique, Carbon, 45, 2692, 10.1016/j.carbon.2007.08.032 Ruhland, 1998, Gas-kinetic interactions of nitrous oxides with SnO2 surfaces, Sens. Actuators B: Chem., 50, 85, 10.1016/S0925-4005(98)00160-9 Tamaki, 1989, Adsorption behavior of Co and interfering gases on SnO, Surf. Sci., 221, 183, 10.1016/0039-6028(89)90574-8 Neri, 2007, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors, Sens. Actuators B: Chem., 127, 455, 10.1016/j.snb.2007.04.046 Barreca, 2011, Plasma enhanced-CVD of undoped and fluorine-doped Co3O4 nanosystems for novel gas sensors, Sens. Actuators B: Chem., 160, 79, 10.1016/j.snb.2011.07.016 Kohl, 2000, Function and applications of gas sensors, J. Phys. D: Appl. Phys., 34, R125, 10.1088/0022-3727/34/19/201 Hagen, 1999, 83 Cheng, 2012, Characterizing individual SnO2 nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases, Mater. Chem. Phys., 137, 372, 10.1016/j.matchemphys.2012.09.037 Johnson, 1971, The influence of debye length on the C-V measurement of doping profiles, IEEE Trans. Electron Devices, 18, 965, 10.1109/T-ED.1971.17311 Sze, 1936 Cheng, 1998, Electrical conductivity of Co3O4 films prepared by chemical vapour deposition, Mater. Chem. Phys., 53, 225, 10.1016/S0254-0584(98)00044-3