Fe2B magnetic nanoparticles: Synthesis, optimization and cytotoxicity for potential biomedical applications
Tài liệu tham khảo
Jiang, 2020, Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting, Nanoscale, 12, 9327, 10.1039/D0NR01279C
Jothi, 2018, A simple, general synthetic route toward nanoscale transition metal borides, Adv. Mater., 10.1002/adma.201704181
Liu, 2020, Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires, J. Mater. Chem., 8, 13638, 10.1039/C9TA14256H
Li, 2014, First-principle calculations of structural, elastic and thermodynamic properties of Fe-B compounds, Intermetallics, 46, 211, 10.1016/j.intermet.2013.11.007
Hamayun, 2018, Magnetic and magnetothermal studies of iron boride (FeB) nanoparticles, J. Magn. Magn Mater., 451, 407, 10.1016/j.jmmm.2017.11.088
Takahashi, 1981, Phase diagram of amorphous and crystallized Fe-B alloy system, Jpn. J. Appl. Phys., 20, 1821, 10.1143/JJAP.20.1821
Zhao, 2020, Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2B, Phys. Chem. Chem. Phys., 22, 27425, 10.1039/D0CP03380D
Mertdinç, 2018, Mechanochemically synthesized Fe2B nanoparticles embedded in SiO2 nanospheres, Ceram. Int., 44, 14834, 10.1016/j.ceramint.2018.05.116
Liu, 2018, Multiscale assembly of Fe2B porous microspheres for large magnetic losses in the gigahertz range, J. Alloys Compd., 765, 943, 10.1016/j.jallcom.2018.06.292
Rades, 2014
Wang, 2021, Balance between strength and ductility of dilute Fe2B by high-throughput first-principles calculations, Ceram. Int., 47, 4758, 10.1016/j.ceramint.2020.10.045
Kapfenberger, 2006, Structure refinements of iron borides Fe2B and FeB, Zeitschrift Fur Kristallographie
Shao, 2020, Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance, J. Alloys Compd., 813, 152007, 10.1016/j.jallcom.2019.152007
Rades, 2011, Wet-chemical synthesis of nanoscale iron boride, XAFS analysis and crystallisation to α-FeB, ChemPhysChem, 12, 1756, 10.1002/cphc.201001072
Torresan, 2021, Biocompatible iron–boron nanoparticles designed for neutron capture therapy guided by magnetic resonance imaging, Advanced Healthcare Materials, 10, 1, 10.1002/adhm.202001632
Fatima, 2021, Fundamentals to apply magnetic nanoparticles for hyperthermia therapy, Nanomaterials, 11, 1, 10.3390/nano11051203
Miaskowski, 2017, Specific absorption rate parameter model in magnetic hyperthermia
Mohammadi, 2016, Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys, J. Magn. Magn Mater., 419, 189, 10.1016/j.jmmm.2016.06.037
Simsek, 2017, Mechanochemical processing and microstructural characterization of pure Fe2B nanocrystals, Adv. Powder Technol., 28, 3056, 10.1016/j.apt.2017.09.017
Long, 2017
Suryanarayana, 2022, Mechanical alloying: a critical review, Materials Research Letters, 10, 619, 10.1080/21663831.2022.2075243
El-Eskandarany, 2020, Introduction
Szczesniak, 2020, Mechanochemical synthesis of highly porous materials, Mater. Horiz., 7, 1457, 10.1039/D0MH00081G
Şenyurt, 2021, In-situ synthesis of tungsten boride-carbide composite powders from WO3-B2O3–Mg–C quaternary system via a mechanochemical route, Ceram. Int., 47, 1640, 10.1016/j.ceramint.2020.08.280
Van Ende, 2013, Critical thermodynamic evaluation and optimization of the Fe-B, Fe-Nd, B-Nd and Nd-Fe-B systems, J. Alloys Compd., 548, 133, 10.1016/j.jallcom.2012.08.127
Ağaoğulları, 2012, Synthesis of LaB6 powders from La2O3, B2O3 and Mg blends via a mechanochemical route, Ceram. Int., 38, 6203, 10.1016/j.ceramint.2012.04.073
Dreval, 2016, Calculated phase diagrams and thermodynamic properties of the Al2O3-Fe2O3-FeO system, J. Alloys Compd., 657, 192, 10.1016/j.jallcom.2015.10.017
Kuziora, 2014, Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process, Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2014.03.009
Adil, 2018, Mechanochemical synthesis of nanocrystalline aluminium boride (AlB12), Ceram. Int., 44, 20105, 10.1016/j.ceramint.2018.07.302
Tsuzuki, 2021, Mechanochemical synthesis of metal oxide nanoparticles, Communications Chemistry, 4, 10.1038/s42004-021-00582-3
Malhotra, 2020, Potential toxicity of iron oxide magnetic nanoparticles: a review, Molecules, 25, 1, 10.3390/molecules25143159
Kush, 2021, Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application, Asian J. Pharm. Sci., 16, 704, 10.1016/j.ajps.2021.05.005
Jian, 2020, Microstructure, mechanical properties and toughening mechanism of directional Fe2B crystal in Fe-B alloy with trace Cr addition, J. Mater. Sci. Technol., 57, 172, 10.1016/j.jmst.2020.03.058
Hunter, 1993
Hunter, 1981
Chisholm, 2021, Driven and active colloids at fluid interfaces, J. Fluid Mech., 10.1017/jfm.2020.708
Colla, 2012, Water-based Fe2O3 nanofluid characterization: thermal conductivity and viscosity measurements and correlation, Adv. Mech. Eng., 10.1155/2012/674947
Malekzadeh, 2016, Experimental investigations on the viscosity of magnetic nanofluids under the influence of temperature, volume fractions of nanoparticles and external magnetic field, J. Appl. Fluid Mech., 9, 693, 10.18869/acadpub.jafm.68.225.24022
Wittmann, 2021, The effect of pH and viscosity on magnetophoretic separation of iron oxide nanoparticles, Magnetochemistry, 7, 10.3390/magnetochemistry7060080
Vijayakanth, 2022
Tadros, 2011
Barrese, 1984, A new synthesis of vonsenite, Neues Jahrbuch Fur Mineralogie, Monatshefte., 483
Kandasamy, 2015, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics, Int. J. Pharm., 496, 191, 10.1016/j.ijpharm.2015.10.058
Hilger, 2001, Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice, Radiology, 10.1148/radiology.218.2.r01fe19570
Fortin, 2007, Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am. Chem. Soc., 10.1021/ja067457e
Shah, 2015, Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia, J. Magn. Magn Mater., 387, 96, 10.1016/j.jmmm.2015.03.085
Kekalo, 2015, Magnetic nanoparticles with high specific absorption rate at low alternating magnetic field, Nano Life, 5, 1550002, 10.1142/S1793984415500026
Sardari, 2011, Cancer treatment with hyperthermia