Fe2B magnetic nanoparticles: Synthesis, optimization and cytotoxicity for potential biomedical applications

Sıddıka Mertdinç-Ülküseven1,2, Farnoud Khakzad1,2, Caner Aslan1, Kubra Onbasli3, Çağdaş Çevik4, Sevim İşçi4, Özge Balcı-Çağıran5,6, Havva Yagci Acar5,7,8, M. Lütfi Öveçoğlu1, Duygu Ağaoğulları1,2
1Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Metallurgical and Materials Engineering Department, Particulate Materials Laboratories (PML), Graphene & 2D Materials Laboratory, 34469, Maslak, Istanbul, Türkiye
2Istanbul Technical University, Prof. Dr. Adnan Tekin Materials Science and Production Technologies Applied Research Center (ATARC), 34469, Maslak, Istanbul, Türkiye
3Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Metallurgical and Materials Engineering Department, 34469, Maslak, Istanbul, Türkiye
4Istanbul Technical University, Faculty of Science and Letters, Department of Physics, 34469, Maslak, Istanbul, Türkiye
5Koç University, Department of Chemistry, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Türkiye
6Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Türkiye
7Koç University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Türkiye
8Koç University, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Türkiye

Tài liệu tham khảo

Jiang, 2020, Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting, Nanoscale, 12, 9327, 10.1039/D0NR01279C

Jothi, 2018, A simple, general synthetic route toward nanoscale transition metal borides, Adv. Mater., 10.1002/adma.201704181

Liu, 2020, Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires, J. Mater. Chem., 8, 13638, 10.1039/C9TA14256H

Li, 2014, First-principle calculations of structural, elastic and thermodynamic properties of Fe-B compounds, Intermetallics, 46, 211, 10.1016/j.intermet.2013.11.007

Hamayun, 2018, Magnetic and magnetothermal studies of iron boride (FeB) nanoparticles, J. Magn. Magn Mater., 451, 407, 10.1016/j.jmmm.2017.11.088

Takahashi, 1981, Phase diagram of amorphous and crystallized Fe-B alloy system, Jpn. J. Appl. Phys., 20, 1821, 10.1143/JJAP.20.1821

Li, 2006, Ferromagnetic iron boride (Fe3B) nanowires, Chem. Mater., 18, 2552, 10.1021/cm060068z

Zhao, 2020, Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2B, Phys. Chem. Chem. Phys., 22, 27425, 10.1039/D0CP03380D

Mertdinç, 2018, Mechanochemically synthesized Fe2B nanoparticles embedded in SiO2 nanospheres, Ceram. Int., 44, 14834, 10.1016/j.ceramint.2018.05.116

Liu, 2018, Multiscale assembly of Fe2B porous microspheres for large magnetic losses in the gigahertz range, J. Alloys Compd., 765, 943, 10.1016/j.jallcom.2018.06.292

Rades, 2014

Wang, 2021, Balance between strength and ductility of dilute Fe2B by high-throughput first-principles calculations, Ceram. Int., 47, 4758, 10.1016/j.ceramint.2020.10.045

Kapfenberger, 2006, Structure refinements of iron borides Fe2B and FeB, Zeitschrift Fur Kristallographie

Shao, 2020, Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance, J. Alloys Compd., 813, 152007, 10.1016/j.jallcom.2019.152007

Rades, 2011, Wet-chemical synthesis of nanoscale iron boride, XAFS analysis and crystallisation to α-FeB, ChemPhysChem, 12, 1756, 10.1002/cphc.201001072

Torresan, 2021, Biocompatible iron–boron nanoparticles designed for neutron capture therapy guided by magnetic resonance imaging, Advanced Healthcare Materials, 10, 1, 10.1002/adhm.202001632

Fatima, 2021, Fundamentals to apply magnetic nanoparticles for hyperthermia therapy, Nanomaterials, 11, 1, 10.3390/nano11051203

Miaskowski, 2017, Specific absorption rate parameter model in magnetic hyperthermia

Mohammadi, 2016, Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys, J. Magn. Magn Mater., 419, 189, 10.1016/j.jmmm.2016.06.037

Simsek, 2017, Mechanochemical processing and microstructural characterization of pure Fe2B nanocrystals, Adv. Powder Technol., 28, 3056, 10.1016/j.apt.2017.09.017

Long, 2017

Suryanarayana, 2022, Mechanical alloying: a critical review, Materials Research Letters, 10, 619, 10.1080/21663831.2022.2075243

El-Eskandarany, 2020, Introduction

Szczesniak, 2020, Mechanochemical synthesis of highly porous materials, Mater. Horiz., 7, 1457, 10.1039/D0MH00081G

Şenyurt, 2021, In-situ synthesis of tungsten boride-carbide composite powders from WO3-B2O3–Mg–C quaternary system via a mechanochemical route, Ceram. Int., 47, 1640, 10.1016/j.ceramint.2020.08.280

Baláž, 2021, Environmental Mechanochemistry, 10.1007/978-3-030-75224-8

Van Ende, 2013, Critical thermodynamic evaluation and optimization of the Fe-B, Fe-Nd, B-Nd and Nd-Fe-B systems, J. Alloys Compd., 548, 133, 10.1016/j.jallcom.2012.08.127

Ağaoğulları, 2012, Synthesis of LaB6 powders from La2O3, B2O3 and Mg blends via a mechanochemical route, Ceram. Int., 38, 6203, 10.1016/j.ceramint.2012.04.073

Dreval, 2016, Calculated phase diagrams and thermodynamic properties of the Al2O3-Fe2O3-FeO system, J. Alloys Compd., 657, 192, 10.1016/j.jallcom.2015.10.017

Kuziora, 2014, Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process, Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2014.03.009

Adil, 2018, Mechanochemical synthesis of nanocrystalline aluminium boride (AlB12), Ceram. Int., 44, 20105, 10.1016/j.ceramint.2018.07.302

Tsuzuki, 2021, Mechanochemical synthesis of metal oxide nanoparticles, Communications Chemistry, 4, 10.1038/s42004-021-00582-3

Malhotra, 2020, Potential toxicity of iron oxide magnetic nanoparticles: a review, Molecules, 25, 1, 10.3390/molecules25143159

Kush, 2021, Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application, Asian J. Pharm. Sci., 16, 704, 10.1016/j.ajps.2021.05.005

Jian, 2020, Microstructure, mechanical properties and toughening mechanism of directional Fe2B crystal in Fe-B alloy with trace Cr addition, J. Mater. Sci. Technol., 57, 172, 10.1016/j.jmst.2020.03.058

Hunter, 1993

Hunter, 1981

Chisholm, 2021, Driven and active colloids at fluid interfaces, J. Fluid Mech., 10.1017/jfm.2020.708

Colla, 2012, Water-based Fe2O3 nanofluid characterization: thermal conductivity and viscosity measurements and correlation, Adv. Mech. Eng., 10.1155/2012/674947

Malekzadeh, 2016, Experimental investigations on the viscosity of magnetic nanofluids under the influence of temperature, volume fractions of nanoparticles and external magnetic field, J. Appl. Fluid Mech., 9, 693, 10.18869/acadpub.jafm.68.225.24022

Wittmann, 2021, The effect of pH and viscosity on magnetophoretic separation of iron oxide nanoparticles, Magnetochemistry, 7, 10.3390/magnetochemistry7060080

Vijayakanth, 2022

Gu, 2020, Magnetic hyperthermia with ε-Fe2O3nanoparticles, RSC Adv., 10, 28786, 10.1039/D0RA04361C

Tadros, 2011

Park, 2010, Magnetorheology: materials and application, Soft Matter, 10.1039/c0sm00014k

Barrese, 1984, A new synthesis of vonsenite, Neues Jahrbuch Fur Mineralogie, Monatshefte., 483

Kandasamy, 2015, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics, Int. J. Pharm., 496, 191, 10.1016/j.ijpharm.2015.10.058

Hilger, 2001, Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice, Radiology, 10.1148/radiology.218.2.r01fe19570

Fortin, 2007, Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am. Chem. Soc., 10.1021/ja067457e

Shah, 2015, Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia, J. Magn. Magn Mater., 387, 96, 10.1016/j.jmmm.2015.03.085

Kekalo, 2015, Magnetic nanoparticles with high specific absorption rate at low alternating magnetic field, Nano Life, 5, 1550002, 10.1142/S1793984415500026

Sardari, 2011, Cancer treatment with hyperthermia