Effect of sintering parameters on the microstructure and micromechanical properties of in-situ synthesized boride phases (Fe2B-FeB) in iron matrix composites reinforced with B4C particles
Tài liệu tham khảo
Yamaguchi, 1997, Compaction and sintering characteristics of composite metal powders, J. Mater. Process. Technol., 63, 364, 10.1016/S0924-0136(96)02648-9
German, 1996
Bocchini, 2015, Sinter-hardening, 3173
Manohar, 2018, Fabrication of metal matrix composites by powder metallurgy: a review, AIP Conf. Proc. 1952, 1, 1
Lawley, 2003, Metallography of powder metallurgy materials, Mater. Charact., 51, 315, 10.1016/j.matchar.2004.01.006
Meignanamoorthy, 2018, Synthesis of metal matrix composites via powder metallurgy route: a review, Mech. Mech. Eng., 22, 65, 10.2478/mme-2018-0007
Malik, 2017, Powder metallurgy processed ferrous composites: a review, Int. J. Eng. Adv. Technol., 6, 12
Tjong, 2000, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng., 29, 49, 10.1016/S0927-796X(00)00024-3
2012, Sintering - Methods and products, 249
2000, Processing and fabrication of advanced materials, vol. 8, 921
Chaudhary, 2020, Comparative study of fabrication methods of metal matrix composites by powder metallurgy & stir casting methods, Int. Res. J. Moderniz. Eng. Technol. Sci., 2, 436
Sankhla, 2015, On studies of powder metallurgy as an effective method for processing metal matrix composites, Indian J. Appl. Res., 5, 43
Delavari, 2011, The effect of powder metallurgy process parameters on mechanical properties of micro and nano-iron powder, Int. J. Eng. Sci. Technol., 3, 86, 10.4314/ijest.v3i9.7
Javanbakht, 2016, The effect of sintering temperature on the structure and mechanical properties of medical-grade powder metallurgy stainless steels, Powder Technol., 289, 37, 10.1016/j.powtec.2015.11.054
Gunes, 2015, Effect of sintering duration on some properties of pure magnesium, Powd. Metall. Met. Ceram., 54, 156, 10.1007/s11106-015-9693-8
Luo, 2019, Effect of sintering parameters on the microstructure and mechanical properties of medical mg–3Mn and mg–3Zn prepared by powder metallurgy, Trans. Indian Inst. Metals, 1
Acar, 2011, Sintering parameters and mechanical properties of injection moulded aluminium powder, Powder Metall., 54, 427, 10.1179/003258910X12740974839558
Subaşı, 2017, An investigation of sintering parameters of Ti-6Al-7Nb fabricated by powder injection molding, Gazi Univ. J. Sci., 30, 502
Bolzoni, 2013, Influence of sintering parameters on the properties of powder metallurgy Ti–3Al–2.5V alloy, Mater. Charact., 84, 48, 10.1016/j.matchar.2013.07.009
Falodun, 2018, Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys, J. Alloys Compd., 736, 202, 10.1016/j.jallcom.2017.11.140
Rahimian, 2009, The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy, J. Mater. Process. Technol., 209, 5387, 10.1016/j.jmatprotec.2009.04.007
Vani, 2018, The effect of process parameters in aluminum metal matrix composites with powder metallurgy, Manufact. Rev., 5, 1
Nuruzzaman, 2016, Effect of sintering temperature on the properties of Aluminium-Aluminium oxide composite materials, Int. J. Eng. Mat. Manufact., 1, 59
Gurbuz, M. and T. Mutuk, Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites. J. Compos. Mater., 2017. 0(0): p. 1–9.
Arévalo, 2016, Influence of sintering temperature on the microstructure and mechanical properties of in situ reinforced titanium composites by inductive hot pressing, Materials, 9, 1
Zhang, 2019, The effect of hot pressing sintering temperature and holding time on the properties of graphene/Cu layered composites, IOP Conf. Ser. Earth Environ. Sci., 310, 1, 10.1088/1755-1315/310/3/032046
Hryha, 2019, Effect of heating rate and process atmosphere on the thermodynamics and kinetics of the sintering of pre-alloyed water-atomized powder metallurgy steels, J. Am. Ceram. Soc., 102, 748, 10.1111/jace.16079
Bardhan, 2010, Analysis of density of sintered Iron powder component using the response surface method, Mater. Sci. Appl., 1, 152
Dai, 2020, Effects of sintering parameters and WC addition on properties of Iron-nickel pre-alloy matrix diamond composites, Mater. Sci. Forum, 993, 739, 10.4028/www.scientific.net/MSF.993.739
Brytan, 2009, The influence of sintering time on the properties of PM duplex stainless steel, J. Achievem. Mat. Manufact. Eng., 37, 387
François, 1997, Effect of sintering parameters on mechanical properties of sinter hardened materials, Adv. Powder Metall. Partic. Mat., 2, 1
Shamsuddin, 2013, Fabrication and characterisation of powder metallurgy Fe-Cr matrix composites reinforced with Al2O3, Adv. Mater. Res., 686, 157, 10.4028/www.scientific.net/AMR.686.157
Zhao, 2021, Influence of carbonized polymer dot (CPD) structure on mechanical and electrical properties of copper matrix composite, Mater. Charact., 181, 1, 10.1016/j.matchar.2021.111463
Hathaway, 1997, Ferrous composites: a review, Proc. Int. Conf. High Temp. Capill., 29, 267
Ebrahimi, 2016, Effect of iron on the wetting, sintering ability, and the physical and mechanical properties of boron carbide composites: a review, Int. J. Refract. Met. Hard Mater., 57, 78, 10.1016/j.ijrmhm.2016.02.007
Açıkgöz, 2019, Wear behaviour of B4C reinforced Fe based composites produced by powder metallurgy, 492
Nair, 2020, Effect of in-situ synthesized boride phases on the impact behavior of iron-based composites reinforced by B4C particles, Metals, 10, 1
Neves, 2022, Synthesis of nanostructured carbon derived from the solid-state reaction between iron and boron carbide, Mater. Chem. Phys., 276, 1, 10.1016/j.matchemphys.2021.125396
Bendereva, 2012, Activating effect of boron microadditions on sintering of powder alloy based on iron, Metallurgist, 55, 761, 10.1007/s11015-012-9500-4
Baglyuk, 2001, Powder metallurgy Wear-resistant materials based on Iron. I. Materials prepared by sintering and infiltration, Powd. Metall. Met. Ceram., 40, 34, 10.1023/A:1011399504008
Korol’kov, 1997, Sintering mechanism of Iron powder with microadditions of boron, Powder Metall. Met. Ceram., 36, 470, 10.1007/BF02680494
Turov, 1989, Gas transport processes in sintering of an iron-boron carbide powder composite, Soviet Powder Metall. Met. Ceram., 28, 618, 10.1007/BF00794577
Campos, 2006, Growth kinetics of iron boride layers: dimensional analysis, Appl. Surf. Sci., 252, 8662, 10.1016/j.apsusc.2005.12.002
Turov, 1991, Structure formation in sintering Iron-boron carbide powder composite, Soviet Powder Metall. Met. Ceram., 30, 465, 10.1007/BF00795069
Nowacki, 1992, Structure and properties of Fe-Fe2B cermets, J. Mater. Sci., 27, 3651, 10.1007/BF01151846
Ozbek, 2002, Mechanical properties of boronized AISI W4 steel, Surf. Coat. Technol., 154, 14, 10.1016/S0257-8972(01)01409-8
Ozdemir, 2006, Hard iron boride (Fe2B) on 99.97wt% pure iron, Vacuum, 80, 1391, 10.1016/j.vacuum.2006.01.022
Campos-Silva, 2017, Evolution of boride layers during a diffusion annealing process, Surf. Coat. Technol., 309, 155, 10.1016/j.surfcoat.2016.11.054
Campos-Silva, 2013, A study of indentation for mechanical characterization of the Fe2B layer, Surf. Coat. Technol., 232, 173, 10.1016/j.surfcoat.2013.05.003
Rodríguez-Castro, 2013, Mechanical properties of FeB and Fe2B layers estimated by Berkovich nanoindentation on tool borided steel, Surf. Coat. Technol., 215, 291, 10.1016/j.surfcoat.2012.05.145
Campos-Silva, 2010, Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels, Surf. Coat. Technol., 205, 403, 10.1016/j.surfcoat.2010.06.068
Kulka, 2017, Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron, Surf. Coat. Technol., 325, 515, 10.1016/j.surfcoat.2017.07.020
Li, 2016, Boron diffusion in bcc-Fe studied by first-principles calculations, Chin. Phys. B, 25, 036601, 10.1088/1674-1056/25/3/036601
Keddam, 2005, A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding, Appl. Surf. Sci., 252, 393, 10.1016/j.apsusc.2005.01.016
Zhou, 2017, Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, Mater. Charact., 124, 182, 10.1016/j.matchar.2017.01.001
Martini, 2004, Mechanism of thermochemical growth of iron borides on iron, J. Mater. Sci., 39, 933, 10.1023/B:JMSC.0000012924.74578.87
Filonenko, 2013, The effect of carbon on phase composition and phase transformations in Fe-В system alloys, Prombl. Atom. Sci. Technol., 5, 168
Nowacki, 1993, The mechanism of reaction sintering of iron-iron boride cermets, J. Mater. Sci., 28, 3939, 10.1007/BF00353202
Mizrahi, 2007, The effect of Fe addition on processing and mechanical properties of reaction infiltrated boron carbide-based composites, J. Mater. Sci., 42, 6923, 10.1007/s10853-006-1304-0
Ramesh, 2011, A study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites, Mater. Sci. Eng. A, 528, 4125, 10.1016/j.msea.2011.02.024
Yang, 2017, Fabrication and characterization of in situ synthesized SiC/Al composites by combustion synthesis and hot press consolidation method, Scanning, 2017, 1, 10.1155/2017/9314740
Moazami-Goudarzi, 2011, Fabrication of Al/SiC nanocomposite powders via in situ powder metallurgy method, Adv. Mater. Res., 295, 1347, 10.4028/www.scientific.net/AMR.295-297.1347
Reddy, 2007, A review on the synthesis of in situ aluminum based composites by thermal, mechanical and mechanical–thermal activation of chemical reactions, J. Mater. Sci., 42, 9366, 10.1007/s10853-007-1827-z
Guo, 2020, Achieving high combination of strength and ductility of Al matrix composite via in-situ formed Ti-Al3Ti core-shell particle, Mater. Charact., 170, 10.1016/j.matchar.2020.110666
Daniel, 1997, Metal-ceramic composites via in-situ methods, J. Mater. Process. Technol., 68, 132, 10.1016/S0924-0136(96)00020-9
Nicoara, 2017, Optimizing the parameters for in situ fabrication of hybrid Al-Al2O3 composites, J. Therm. Anal. Calorim., 127, 115, 10.1007/s10973-016-5595-3
Zhang, 2021, Effect of sintering temperature on microstructure and mechanical properties of hot-pressed Fe/FeAl2O4 composite, Crystals, 11, 10.3390/cryst11040422
Cerit, 2014, Investigation of the low-speed impact behavior of dual particle size metal matrix composites, Mater. Des., 57, 330, 10.1016/j.matdes.2013.12.074
Okamoto, 2004, B-Fe (boron-iron), J. Phase Equilib. Diffus., 25, 297, 10.1007/s11669-004-0128-3
Dang, 2010, Effect of quenching temperature on structure and abrasive wear resistance of boron-containing medium carbon steel, Mater. Werkst., 41, 869, 10.1002/mawe.201000592
Choteborsky, 2012, The morphology change of Iron Diboride in the Fe-B alloy during deformation, MM Sci. J., 338, 10.17973/MMSJ.2012_10_201212
Zhang, 2020, Improving comprehensive performance of copper matrix composite by spray pyrolysis fabricated CNT/W reinforcement, J. Alloys Compd., 833, 10.1016/j.jallcom.2020.154940
Lentz, 2018, Hardness and modulus of Fe2B, Fe3(C,B), and Fe23(C,B)6 borides and carboborides in the Fe-C-B system, Mater. Charact., 135, 192, 10.1016/j.matchar.2017.11.012