Effect of sintering parameters on the microstructure and micromechanical properties of in-situ synthesized boride phases (Fe2B-FeB) in iron matrix composites reinforced with B4C particles

Materials Characterization - Tập 191 - Trang 112075 - 2022
Mustafa Hamamcı1, Afşın Alper Cerit2,3, Fehmi Nair4,3
1Department of Mechanical Engineering, Iğdır University, Iğdır 76000, Türkiye
2Department of Industrial Design Engineering, Erciyes University, Kayseri 38039, Türkiye
3Composite Materials Research Laboratory, Faculty of Engineering, Erciyes University, Kayseri 38039, Türkiye
4Department of Mechanical Engineering, Erciyes University, Kayseri 38039, Türkiye

Tài liệu tham khảo

Yamaguchi, 1997, Compaction and sintering characteristics of composite metal powders, J. Mater. Process. Technol., 63, 364, 10.1016/S0924-0136(96)02648-9 German, 1996 Bocchini, 2015, Sinter-hardening, 3173 Manohar, 2018, Fabrication of metal matrix composites by powder metallurgy: a review, AIP Conf. Proc. 1952, 1, 1 Lawley, 2003, Metallography of powder metallurgy materials, Mater. Charact., 51, 315, 10.1016/j.matchar.2004.01.006 Meignanamoorthy, 2018, Synthesis of metal matrix composites via powder metallurgy route: a review, Mech. Mech. Eng., 22, 65, 10.2478/mme-2018-0007 Malik, 2017, Powder metallurgy processed ferrous composites: a review, Int. J. Eng. Adv. Technol., 6, 12 Tjong, 2000, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng., 29, 49, 10.1016/S0927-796X(00)00024-3 2012, Sintering - Methods and products, 249 2000, Processing and fabrication of advanced materials, vol. 8, 921 Chaudhary, 2020, Comparative study of fabrication methods of metal matrix composites by powder metallurgy & stir casting methods, Int. Res. J. Moderniz. Eng. Technol. Sci., 2, 436 Sankhla, 2015, On studies of powder metallurgy as an effective method for processing metal matrix composites, Indian J. Appl. Res., 5, 43 Delavari, 2011, The effect of powder metallurgy process parameters on mechanical properties of micro and nano-iron powder, Int. J. Eng. Sci. Technol., 3, 86, 10.4314/ijest.v3i9.7 Javanbakht, 2016, The effect of sintering temperature on the structure and mechanical properties of medical-grade powder metallurgy stainless steels, Powder Technol., 289, 37, 10.1016/j.powtec.2015.11.054 Gunes, 2015, Effect of sintering duration on some properties of pure magnesium, Powd. Metall. Met. Ceram., 54, 156, 10.1007/s11106-015-9693-8 Luo, 2019, Effect of sintering parameters on the microstructure and mechanical properties of medical mg–3Mn and mg–3Zn prepared by powder metallurgy, Trans. Indian Inst. Metals, 1 Acar, 2011, Sintering parameters and mechanical properties of injection moulded aluminium powder, Powder Metall., 54, 427, 10.1179/003258910X12740974839558 Subaşı, 2017, An investigation of sintering parameters of Ti-6Al-7Nb fabricated by powder injection molding, Gazi Univ. J. Sci., 30, 502 Bolzoni, 2013, Influence of sintering parameters on the properties of powder metallurgy Ti–3Al–2.5V alloy, Mater. Charact., 84, 48, 10.1016/j.matchar.2013.07.009 Falodun, 2018, Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys, J. Alloys Compd., 736, 202, 10.1016/j.jallcom.2017.11.140 Rahimian, 2009, The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy, J. Mater. Process. Technol., 209, 5387, 10.1016/j.jmatprotec.2009.04.007 Vani, 2018, The effect of process parameters in aluminum metal matrix composites with powder metallurgy, Manufact. Rev., 5, 1 Nuruzzaman, 2016, Effect of sintering temperature on the properties of Aluminium-Aluminium oxide composite materials, Int. J. Eng. Mat. Manufact., 1, 59 Gurbuz, M. and T. Mutuk, Effect of process parameters on hardness and microstructure of graphene reinforced titanium composites. J. Compos. Mater., 2017. 0(0): p. 1–9. Arévalo, 2016, Influence of sintering temperature on the microstructure and mechanical properties of in situ reinforced titanium composites by inductive hot pressing, Materials, 9, 1 Zhang, 2019, The effect of hot pressing sintering temperature and holding time on the properties of graphene/Cu layered composites, IOP Conf. Ser. Earth Environ. Sci., 310, 1, 10.1088/1755-1315/310/3/032046 Hryha, 2019, Effect of heating rate and process atmosphere on the thermodynamics and kinetics of the sintering of pre-alloyed water-atomized powder metallurgy steels, J. Am. Ceram. Soc., 102, 748, 10.1111/jace.16079 Bardhan, 2010, Analysis of density of sintered Iron powder component using the response surface method, Mater. Sci. Appl., 1, 152 Dai, 2020, Effects of sintering parameters and WC addition on properties of Iron-nickel pre-alloy matrix diamond composites, Mater. Sci. Forum, 993, 739, 10.4028/www.scientific.net/MSF.993.739 Brytan, 2009, The influence of sintering time on the properties of PM duplex stainless steel, J. Achievem. Mat. Manufact. Eng., 37, 387 François, 1997, Effect of sintering parameters on mechanical properties of sinter hardened materials, Adv. Powder Metall. Partic. Mat., 2, 1 Shamsuddin, 2013, Fabrication and characterisation of powder metallurgy Fe-Cr matrix composites reinforced with Al2O3, Adv. Mater. Res., 686, 157, 10.4028/www.scientific.net/AMR.686.157 Zhao, 2021, Influence of carbonized polymer dot (CPD) structure on mechanical and electrical properties of copper matrix composite, Mater. Charact., 181, 1, 10.1016/j.matchar.2021.111463 Hathaway, 1997, Ferrous composites: a review, Proc. Int. Conf. High Temp. Capill., 29, 267 Ebrahimi, 2016, Effect of iron on the wetting, sintering ability, and the physical and mechanical properties of boron carbide composites: a review, Int. J. Refract. Met. Hard Mater., 57, 78, 10.1016/j.ijrmhm.2016.02.007 Açıkgöz, 2019, Wear behaviour of B4C reinforced Fe based composites produced by powder metallurgy, 492 Nair, 2020, Effect of in-situ synthesized boride phases on the impact behavior of iron-based composites reinforced by B4C particles, Metals, 10, 1 Neves, 2022, Synthesis of nanostructured carbon derived from the solid-state reaction between iron and boron carbide, Mater. Chem. Phys., 276, 1, 10.1016/j.matchemphys.2021.125396 Bendereva, 2012, Activating effect of boron microadditions on sintering of powder alloy based on iron, Metallurgist, 55, 761, 10.1007/s11015-012-9500-4 Baglyuk, 2001, Powder metallurgy Wear-resistant materials based on Iron. I. Materials prepared by sintering and infiltration, Powd. Metall. Met. Ceram., 40, 34, 10.1023/A:1011399504008 Korol’kov, 1997, Sintering mechanism of Iron powder with microadditions of boron, Powder Metall. Met. Ceram., 36, 470, 10.1007/BF02680494 Turov, 1989, Gas transport processes in sintering of an iron-boron carbide powder composite, Soviet Powder Metall. Met. Ceram., 28, 618, 10.1007/BF00794577 Campos, 2006, Growth kinetics of iron boride layers: dimensional analysis, Appl. Surf. Sci., 252, 8662, 10.1016/j.apsusc.2005.12.002 Turov, 1991, Structure formation in sintering Iron-boron carbide powder composite, Soviet Powder Metall. Met. Ceram., 30, 465, 10.1007/BF00795069 Nowacki, 1992, Structure and properties of Fe-Fe2B cermets, J. Mater. Sci., 27, 3651, 10.1007/BF01151846 Ozbek, 2002, Mechanical properties of boronized AISI W4 steel, Surf. Coat. Technol., 154, 14, 10.1016/S0257-8972(01)01409-8 Ozdemir, 2006, Hard iron boride (Fe2B) on 99.97wt% pure iron, Vacuum, 80, 1391, 10.1016/j.vacuum.2006.01.022 Campos-Silva, 2017, Evolution of boride layers during a diffusion annealing process, Surf. Coat. Technol., 309, 155, 10.1016/j.surfcoat.2016.11.054 Campos-Silva, 2013, A study of indentation for mechanical characterization of the Fe2B layer, Surf. Coat. Technol., 232, 173, 10.1016/j.surfcoat.2013.05.003 Rodríguez-Castro, 2013, Mechanical properties of FeB and Fe2B layers estimated by Berkovich nanoindentation on tool borided steel, Surf. Coat. Technol., 215, 291, 10.1016/j.surfcoat.2012.05.145 Campos-Silva, 2010, Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels, Surf. Coat. Technol., 205, 403, 10.1016/j.surfcoat.2010.06.068 Kulka, 2017, Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron, Surf. Coat. Technol., 325, 515, 10.1016/j.surfcoat.2017.07.020 Li, 2016, Boron diffusion in bcc-Fe studied by first-principles calculations, Chin. Phys. B, 25, 036601, 10.1088/1674-1056/25/3/036601 Keddam, 2005, A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding, Appl. Surf. Sci., 252, 393, 10.1016/j.apsusc.2005.01.016 Zhou, 2017, Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, Mater. Charact., 124, 182, 10.1016/j.matchar.2017.01.001 Martini, 2004, Mechanism of thermochemical growth of iron borides on iron, J. Mater. Sci., 39, 933, 10.1023/B:JMSC.0000012924.74578.87 Filonenko, 2013, The effect of carbon on phase composition and phase transformations in Fe-В system alloys, Prombl. Atom. Sci. Technol., 5, 168 Nowacki, 1993, The mechanism of reaction sintering of iron-iron boride cermets, J. Mater. Sci., 28, 3939, 10.1007/BF00353202 Mizrahi, 2007, The effect of Fe addition on processing and mechanical properties of reaction infiltrated boron carbide-based composites, J. Mater. Sci., 42, 6923, 10.1007/s10853-006-1304-0 Ramesh, 2011, A study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites, Mater. Sci. Eng. A, 528, 4125, 10.1016/j.msea.2011.02.024 Yang, 2017, Fabrication and characterization of in situ synthesized SiC/Al composites by combustion synthesis and hot press consolidation method, Scanning, 2017, 1, 10.1155/2017/9314740 Moazami-Goudarzi, 2011, Fabrication of Al/SiC nanocomposite powders via in situ powder metallurgy method, Adv. Mater. Res., 295, 1347, 10.4028/www.scientific.net/AMR.295-297.1347 Reddy, 2007, A review on the synthesis of in situ aluminum based composites by thermal, mechanical and mechanical–thermal activation of chemical reactions, J. Mater. Sci., 42, 9366, 10.1007/s10853-007-1827-z Guo, 2020, Achieving high combination of strength and ductility of Al matrix composite via in-situ formed Ti-Al3Ti core-shell particle, Mater. Charact., 170, 10.1016/j.matchar.2020.110666 Daniel, 1997, Metal-ceramic composites via in-situ methods, J. Mater. Process. Technol., 68, 132, 10.1016/S0924-0136(96)00020-9 Nicoara, 2017, Optimizing the parameters for in situ fabrication of hybrid Al-Al2O3 composites, J. Therm. Anal. Calorim., 127, 115, 10.1007/s10973-016-5595-3 Zhang, 2021, Effect of sintering temperature on microstructure and mechanical properties of hot-pressed Fe/FeAl2O4 composite, Crystals, 11, 10.3390/cryst11040422 Cerit, 2014, Investigation of the low-speed impact behavior of dual particle size metal matrix composites, Mater. Des., 57, 330, 10.1016/j.matdes.2013.12.074 Okamoto, 2004, B-Fe (boron-iron), J. Phase Equilib. Diffus., 25, 297, 10.1007/s11669-004-0128-3 Dang, 2010, Effect of quenching temperature on structure and abrasive wear resistance of boron-containing medium carbon steel, Mater. Werkst., 41, 869, 10.1002/mawe.201000592 Choteborsky, 2012, The morphology change of Iron Diboride in the Fe-B alloy during deformation, MM Sci. J., 338, 10.17973/MMSJ.2012_10_201212 Zhang, 2020, Improving comprehensive performance of copper matrix composite by spray pyrolysis fabricated CNT/W reinforcement, J. Alloys Compd., 833, 10.1016/j.jallcom.2020.154940 Lentz, 2018, Hardness and modulus of Fe2B, Fe3(C,B), and Fe23(C,B)6 borides and carboborides in the Fe-C-B system, Mater. Charact., 135, 192, 10.1016/j.matchar.2017.11.012