In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles

Toxicology Reports - Tập 2 - Trang 27-39 - 2015
Sudeep Shukla1, Alka Jadaun2, Vikas Arora3, Raj Kumar Sinha4, Neha Biyani5, V.K. Jain6
1School of Environmental Sciences, Jawaharlal Nehru University, New Delhi -110067 India
2School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
3Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
4Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
5School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
6School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India

Tài liệu tham khảo

Donaldson, 2004, Nanotoxicology, Occup. Environ. Med., 61, 727, 10.1136/oem.2004.013243 Liu, 2006, Nanoparticles and their biological and environmental applications, J. Biosci. Bioeng., 102, 1, 10.1263/jbb.102.1 Roco, 2007, 1 Lu, 2007, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. Engl., 46, 1222, 10.1002/anie.200602866 Laurent, 2008, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108, 2064, 10.1021/cr068445e Zhang, 2006, Oleic acid coating on the monodisperse magnetite nanoparticles, Appl. Surf. Sci., 253, 2611, 10.1016/j.apsusc.2006.05.023 Rinaudo, 2006, Chitin and chitosan: properties and applications, Prog. Polym. Sci., 31, 603, 10.1016/j.progpolymsci.2006.06.001 Unsoy, 2012, Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications, J. Nanopart. Res., 14, 964, 10.1007/s11051-012-0964-8 Mourya, 2008, Chitosan-modifications and applications: opportunities galore, React. Funct. Polym., 68, 1013, 10.1016/j.reactfunctpolym.2008.03.002 Borm, 2006, The potential risks of nanomaterials: a review carried out for ECETOC, Part. Fiber Toxicol., 3, 11, 10.1186/1743-8977-3-11 Maynard, 2006, Safe handling of nanotechnology, Nature, 444, 267, 10.1038/444267a Oberdörster, 2005, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113, 823, 10.1289/ehp.7339 Savolainen, 2010, Risk assessment of engineered nanomaterials and nanotechnologies – a review, Toxicology, 269, 92, 10.1016/j.tox.2010.01.013 Szalay, 2012, 1 Mahmoudi, 2012, Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles, Chem. Rev., 112, 2323, 10.1021/cr2002596 Mahmoudi, 2009, Cell toxicity of superparamagnetic iron oxide nanoparticles, J. Colloid Interface Sci., 336, 510, 10.1016/j.jcis.2009.04.046 Malvindi, 2014, Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering, PLOS ONE, 9, e85835, 10.1371/journal.pone.0085835 Hafeli, 2009, Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery, Mol. Pharm., 6, 1417, 10.1021/mp900083m Singh, 2010, Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION), Nano Rev., 1, 1, 10.3402/nano.v1i0.5358 Jana, 2004, Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach, Chem. Mater., 16, 3931, 10.1021/cm049221k De Palma, 2007, Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersable, Chem. Mater., 19, 1821, 10.1021/cm0628000 López-Cruz, 2009, Water dispersible iron oxide nanoparticles coated with covalently linked chitosan, J. Mater. Chem., 19, 6870, 10.1039/b908777j Huang, 2009, Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles, Front. Biol. China, 4, 321, 10.1007/s11515-009-0027-4 Woehrle, 2006, Analysis of nanoparticle transmission electron microscopy data using a public-domain image-processing program, Turk. J. Chem., 30, 1 Hussain, 1993, A new approach for measurement of cytotoxicity using colorimetric assay, J. Immunol. Methods, 160, 89, 10.1016/0022-1759(93)90012-V Baskić, 2006, Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using Annexin V/propidium iodide versus acridin orange/ethidium bromide, Cell Biol. Int., 30, 924, 10.1016/j.cellbi.2006.06.016 Altinoz, 2007, Medroxyprogesterone and tamoxifen augment anti-proliferative efficacy and reduce mitochondria-toxicity of epirubicin in FM3A tumor cells in vitro, Cell Biol. Int., 31, 473, 10.1016/j.cellbi.2006.11.013 Schult, 2010, The multikinase inhibitor sorafenib displays significant antiproliferative effects and induces apoptosis via caspase 3,7 and PARP in B- and T-lymphoblastic cells, BMC Cancer, 10, 1, 10.1186/1471-2407-10-560 Reers, 1991, J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential, Biochemistry, 30, 4480, 10.1021/bi00232a015 Smiley, 1991, Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1, Proc. Natl. Acad. Sci. U. S. A., 88, 3671, 10.1073/pnas.88.9.3671 Mancini, 1997, Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line, J. Cell Biol., 138, 449, 10.1083/jcb.138.2.449 Dung, 2009, Preparation and characterization of magnetic nanoparticles with chitosan coating, J. Phys. Conf. Ser., 187, 012036, 10.1088/1742-6596/187/1/012036 Li, 2008, Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles, Biochem. Eng. J., 40, 408, 10.1016/j.bej.2008.01.018 Chang, 2005, Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions, J. Colloid Interface Sci., 283, 446, 10.1016/j.jcis.2004.09.010 Li, 2008, A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads, Bioresour. Technol., 99, 6271, 10.1016/j.biortech.2007.12.002 Aranda, 2013, Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells, Toxicol. In Vitro, 27, 954, 10.1016/j.tiv.2013.01.016 Zamzami, 1995, Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death, J. Exp. Med., 182, 367, 10.1084/jem.182.2.367 Hussain, 2005, In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol. In Vitro, 19, 975, 10.1016/j.tiv.2005.06.034 Toyokuni, 2009, Role of iron in carcinogenesis: cancer as a ferrotoxic disease, Cancer Sci., 100, 9, 10.1111/j.1349-7006.2008.01001.x Lévy, 2010, Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties, Nanotechnology, 21, 395103, 10.1088/0957-4484/21/39/395103 Worthington, 2013, Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung, Nanotechnology, 24, 395101, 10.1088/0957-4484/24/39/395101