Relationship between nanostructure-magnetic property induced by temperature for iron oxide nanoparticles in vacuum, Ar and O2 environments
Tài liệu tham khảo
Qiang, 2006, Iron/iron oxide core-shell nanoclusters for biomedical applications, J. Nanoparticle Res., 8, 489, 10.1007/s11051-005-9011-3
Laurent, 2011, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci., 166, 8, 10.1016/j.cis.2011.04.003
Bautista, 2004, Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging, Nanotechnology., 15, S154, 10.1088/0957-4484/15/4/008
Zhang, 2001, Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes, J. Magn. Magn. Mater., 231, 9, 10.1016/S0304-8853(01)00134-2
Scott, 1995, Morphology, structure, and growth of nanoparticles produced in a carbon arc, Phys. Rev. B., 52, 12564, 10.1103/PhysRevB.52.12564
Hu, 2005, Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles, Water Res., 39, 4528, 10.1016/j.watres.2005.05.051
Hu, 2006, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms, J. Environ. Eng., 132, 709, 10.1061/(ASCE)0733-9372(2006)132:7(709)
Kaur, 2013, Conjugates of Magnetic Nanoparticle Actinide Specific Chelator for Radioactive Waste Separation, Environ. Sci. Technol., 47, 11942, 10.1021/es402205q
Kaur, 2013, Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel, Nano Energy., 2, 124, 10.1016/j.nanoen.2012.08.005
Laan, 1999, Kinetics and Selectivity of the Fischer-Tropsch Synthesis: A Literature Review, Catal. Rev., 41, 255, 10.1081/CR-100101170
Suslick, 1996, Nanostructured Materials Generated by High-Intensity Ultrasound: Sonochemical Synthesis and Catalytic Studies, Chem. Mater., 8, 2172, 10.1021/cm960056l
Jiang, 2014, In situ study of nanostructure and electrical resistance of nanocluster films irradiated with ion beams, Adv. Funct. Mater., 24, 6210, 10.1002/adfm.201400553
Khanal, 2018, High-temperature investigation on morphology, phase and size of iron/iron-oxide core–shell nanoclusters for radiation nanodetector, J. Phys. Appl. Phys., 51, 10.1088/1361-6463/aac47e
Jiang, 2011, Magnetization and susceptibility of ion-irradiated granular magnetite films, Phys. Rev. B., 83, 10.1103/PhysRevB.83.134435
Allongue, 2010, Electrodeposited magnetic layers in the ultrathin limit, MRS Bull., 35, 761, 10.1557/mrs2010.505
Rusponi, 2003, The remarkable difference between surface and step atoms in the magnetic anisotropy of two-dimensional nanostructures, Nat. Mater., 2, 546, 10.1038/nmat930
Meyerheim, 2004, Spin reorientation and structural relaxation of atomic layers: pushing the limits of accuracy, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.156105
Kaur, 2012, Size dependence of inter-and intracluster interactions in core–shell iron–iron oxide nanoclusters, J. Phys. Chem. C., 116, 12875, 10.1021/jp301453w
Wang, 2007, Morphology and oxide shell structure of iron nanoparticles grown by sputter-gas-aggregation, Nanotechnology., 18
Schwaminger, 2017, Oxidation of magnetite nanoparticles: impact on surface and crystal properties, CrystEngComm., 19, 246, 10.1039/C6CE02421A
Nie, 2013, Insight into Magnetite’s Redox Catalysis from Observing Surface Morphology during Oxidation, J. Am. Chem. Soc., 135, 10091, 10.1021/ja402599t
Krajewski, 2015, The influence of thermal annealing on structure and oxidation of iron nanowires, Nukleonika., 60, 87, 10.1515/nuka-2015-0004
Krajewski, 2016, High temperature oxidation of iron–iron oxide core–shell nanowires composed of iron nanoparticles, Phys. Chem. Chem. Phys., 18, 3900, 10.1039/C5CP07569F
Cornell, 2003
Saleem, 2012, Characterization of nanocrystalline α -Fe 2 O 3 thin films grown by reactive evaporation and oxidation of iron, Phys. Scr., 85, 10.1088/0031-8949/85/05/055802
Lehlooh, 1994, Mössbauer and X-ray diffraction studies of heat-treated Fe3O4 fine particles, J. Magn. Magn. Mater., 136, 143, 10.1016/0304-8853(94)90458-8
Liang, 2013, Kinetics of Oxidation Reaction for Magnetite Pellets, J. Iron Steel Res. Int., 20, 16, 10.1016/S1006-706X(13)60150-8
Ratke, 2002, Growth and Coarsening, Springer, Berlin Heidelberg, Berlin, Heidelberg
Marqusee, 1984, Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction, J. Chem. Phys., 80, 536, 10.1063/1.446427
Lee, 2003, Copper oxide reduction through vacuum annealing, Appl. Surf. Sci., 206, 102, 10.1016/S0169-4332(02)01239-4
Poulston, 1998, Temperature-programmed desorption studies of methanol and formic acid decomposition on copper oxide surfaces, Catal. Lett., 52, 63, 10.1023/A:1019007100649
Cullity, 1957, Elements of X-ray Diffraction, Am. J. Phys., 25, 394, 10.1119/1.1934486
Ahmadzadeh, 2017, Magnetic analysis of commercial hematite, magnetite, and their mixtures, AIP Adv., 8
Krajewski, 2018, Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles, J. Magn. Magn. Mater., 458, 346, 10.1016/j.jmmm.2018.03.047
Tomou, 2007, L10 ordering and magnetic interactions in FePt nanoparticles embedded in MgO and SiO2 shell matrices, J. Appl. Phys., 102, 10.1063/1.2752141
Klemmer, 2003, Combined reactions associated with L10 ordering, J. Magn. Magn. Mater., 266, 79, 10.1016/S0304-8853(03)00458-X
Roberts, 1995, Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems, J. Geophys. Res. Solid Earth., 100, 17909, 10.1029/95JB00672
Parry, 1980, Shape-related factors in the magnetization of immobilized magnetite particles, Phys. Earth Planet. Inter., 22, 144, 10.1016/0031-9201(80)90055-2
Bercoff, 2010, Magnetic properties of hematite with large coercivity, Appl. Phys. A., 100, 1019, 10.1007/s00339-010-5983-7
Rath, 1999, Microstructure-dependent coercivity in monodispersed hematite particles, Appl. Phys. Lett., 75, 4171, 10.1063/1.125572
Sahu, 1997, Microstructural and Magnetic Studies on Hydrothermally Prepared Hematite, J. Colloid Interface Sci., 185, 402, 10.1006/jcis.1996.4525
Abraime, 2018, Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application, J. Magn. Magn. Mater. 467, 129, 10.1016/j.jmmm.2018.07.063
Coey, 2011, Hard Magnetic Materials: A Perspective, IEEE Trans. Magn., 47, 4671, 10.1109/TMAG.2011.2166975
Skomski, 2016, Magnetic anisotropy — How much is enough for a permanent magnet?, Scr. Mater., 112, 3, 10.1016/j.scriptamat.2015.09.021