Relationship between nanostructure-magnetic property induced by temperature for iron oxide nanoparticles in vacuum, Ar and O2 environments

Journal of Magnetism and Magnetic Materials - Tập 498 - Trang 166158 - 2020
Lokendra R. Khanal1, Mostafa Ahmadzadeh2, John S. McCloy2, You Qiang1
1Department of Physics, University of Idaho, Moscow, ID 83844, USA
2School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164 USA

Tài liệu tham khảo

Qiang, 2006, Iron/iron oxide core-shell nanoclusters for biomedical applications, J. Nanoparticle Res., 8, 489, 10.1007/s11051-005-9011-3 Laurent, 2011, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci., 166, 8, 10.1016/j.cis.2011.04.003 Bautista, 2004, Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging, Nanotechnology., 15, S154, 10.1088/0957-4484/15/4/008 Zhang, 2001, Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes, J. Magn. Magn. Mater., 231, 9, 10.1016/S0304-8853(01)00134-2 Scott, 1995, Morphology, structure, and growth of nanoparticles produced in a carbon arc, Phys. Rev. B., 52, 12564, 10.1103/PhysRevB.52.12564 Hu, 2005, Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles, Water Res., 39, 4528, 10.1016/j.watres.2005.05.051 Hu, 2006, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms, J. Environ. Eng., 132, 709, 10.1061/(ASCE)0733-9372(2006)132:7(709) Kaur, 2013, Conjugates of Magnetic Nanoparticle Actinide Specific Chelator for Radioactive Waste Separation, Environ. Sci. Technol., 47, 11942, 10.1021/es402205q Kaur, 2013, Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel, Nano Energy., 2, 124, 10.1016/j.nanoen.2012.08.005 Laan, 1999, Kinetics and Selectivity of the Fischer-Tropsch Synthesis: A Literature Review, Catal. Rev., 41, 255, 10.1081/CR-100101170 Suslick, 1996, Nanostructured Materials Generated by High-Intensity Ultrasound: Sonochemical Synthesis and Catalytic Studies, Chem. Mater., 8, 2172, 10.1021/cm960056l Jiang, 2014, In situ study of nanostructure and electrical resistance of nanocluster films irradiated with ion beams, Adv. Funct. Mater., 24, 6210, 10.1002/adfm.201400553 Khanal, 2018, High-temperature investigation on morphology, phase and size of iron/iron-oxide core–shell nanoclusters for radiation nanodetector, J. Phys. Appl. Phys., 51, 10.1088/1361-6463/aac47e Jiang, 2011, Magnetization and susceptibility of ion-irradiated granular magnetite films, Phys. Rev. B., 83, 10.1103/PhysRevB.83.134435 Allongue, 2010, Electrodeposited magnetic layers in the ultrathin limit, MRS Bull., 35, 761, 10.1557/mrs2010.505 Rusponi, 2003, The remarkable difference between surface and step atoms in the magnetic anisotropy of two-dimensional nanostructures, Nat. Mater., 2, 546, 10.1038/nmat930 Meyerheim, 2004, Spin reorientation and structural relaxation of atomic layers: pushing the limits of accuracy, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.156105 Kaur, 2012, Size dependence of inter-and intracluster interactions in core–shell iron–iron oxide nanoclusters, J. Phys. Chem. C., 116, 12875, 10.1021/jp301453w Wang, 2007, Morphology and oxide shell structure of iron nanoparticles grown by sputter-gas-aggregation, Nanotechnology., 18 Schwaminger, 2017, Oxidation of magnetite nanoparticles: impact on surface and crystal properties, CrystEngComm., 19, 246, 10.1039/C6CE02421A Nie, 2013, Insight into Magnetite’s Redox Catalysis from Observing Surface Morphology during Oxidation, J. Am. Chem. Soc., 135, 10091, 10.1021/ja402599t Krajewski, 2015, The influence of thermal annealing on structure and oxidation of iron nanowires, Nukleonika., 60, 87, 10.1515/nuka-2015-0004 Krajewski, 2016, High temperature oxidation of iron–iron oxide core–shell nanowires composed of iron nanoparticles, Phys. Chem. Chem. Phys., 18, 3900, 10.1039/C5CP07569F Cornell, 2003 Saleem, 2012, Characterization of nanocrystalline α -Fe 2 O 3 thin films grown by reactive evaporation and oxidation of iron, Phys. Scr., 85, 10.1088/0031-8949/85/05/055802 Lehlooh, 1994, Mössbauer and X-ray diffraction studies of heat-treated Fe3O4 fine particles, J. Magn. Magn. Mater., 136, 143, 10.1016/0304-8853(94)90458-8 Liang, 2013, Kinetics of Oxidation Reaction for Magnetite Pellets, J. Iron Steel Res. Int., 20, 16, 10.1016/S1006-706X(13)60150-8 Ratke, 2002, Growth and Coarsening, Springer, Berlin Heidelberg, Berlin, Heidelberg Marqusee, 1984, Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction, J. Chem. Phys., 80, 536, 10.1063/1.446427 Lee, 2003, Copper oxide reduction through vacuum annealing, Appl. Surf. Sci., 206, 102, 10.1016/S0169-4332(02)01239-4 Poulston, 1998, Temperature-programmed desorption studies of methanol and formic acid decomposition on copper oxide surfaces, Catal. Lett., 52, 63, 10.1023/A:1019007100649 Cullity, 1957, Elements of X-ray Diffraction, Am. J. Phys., 25, 394, 10.1119/1.1934486 Ahmadzadeh, 2017, Magnetic analysis of commercial hematite, magnetite, and their mixtures, AIP Adv., 8 Krajewski, 2018, Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles, J. Magn. Magn. Mater., 458, 346, 10.1016/j.jmmm.2018.03.047 Tomou, 2007, L10 ordering and magnetic interactions in FePt nanoparticles embedded in MgO and SiO2 shell matrices, J. Appl. Phys., 102, 10.1063/1.2752141 Klemmer, 2003, Combined reactions associated with L10 ordering, J. Magn. Magn. Mater., 266, 79, 10.1016/S0304-8853(03)00458-X Roberts, 1995, Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems, J. Geophys. Res. Solid Earth., 100, 17909, 10.1029/95JB00672 Parry, 1980, Shape-related factors in the magnetization of immobilized magnetite particles, Phys. Earth Planet. Inter., 22, 144, 10.1016/0031-9201(80)90055-2 Bercoff, 2010, Magnetic properties of hematite with large coercivity, Appl. Phys. A., 100, 1019, 10.1007/s00339-010-5983-7 Rath, 1999, Microstructure-dependent coercivity in monodispersed hematite particles, Appl. Phys. Lett., 75, 4171, 10.1063/1.125572 Sahu, 1997, Microstructural and Magnetic Studies on Hydrothermally Prepared Hematite, J. Colloid Interface Sci., 185, 402, 10.1006/jcis.1996.4525 Abraime, 2018, Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application, J. Magn. Magn. Mater. 467, 129, 10.1016/j.jmmm.2018.07.063 Coey, 2011, Hard Magnetic Materials: A Perspective, IEEE Trans. Magn., 47, 4671, 10.1109/TMAG.2011.2166975 Skomski, 2016, Magnetic anisotropy — How much is enough for a permanent magnet?, Scr. Mater., 112, 3, 10.1016/j.scriptamat.2015.09.021