A single step synthesis by mechanical alloying and characterization of nanostructured Fe2B of high magnetic moment

Ceramics International - Tập 47 - Trang 26119-26124 - 2021
Telem Şimşek1, Barış Avar2, Tuncay Şimşek3, Buğra Yıldız4, Arun K. Chattopadhyay5, Şadan Özcan1,4
1Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, 06800, Turkey
2Zonguldak Bülent Ecevit University, Department of Metallurgical and Materials Engineering, 67100, Zonguldak, Turkey
3Department of Mechanical and Metal Technologies, Kırıkkale Vocational High School, Kırıkkale University, 71450 Kırıkkale, Turkey
4Hacettepe University, Department of Physics Engineering, 06800 Ankara, Turkey
5Uniformity Labs, 41400 Christy Street, Fremont, CA, 94538, USA

Tài liệu tham khảo

Li, 2019, Nanoparticle-based sensors for food contaminants, Trac. Trends Anal. Chem., 113, 74, 10.1016/j.trac.2019.01.012 Mariani, 2010, High-Gradient Magnetic Separation of pollutant from wastewaters using permanent magnets, Separ. Purif. Technol., 72, 147, 10.1016/j.seppur.2010.01.017 Cardoso, 2018, Advances in magnetic nanoparticles for biomedical applications, Adv Healthc Mater, 7, 10.1002/adhm.201700845 Espinosa, 2016, Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment, ACS Nano, 10, 2436, 10.1021/acsnano.5b07249 Wu, 2019, Magnetic nanoparticles in nanomedicine: a review of recent advances, Nanotechnology, 30, 502003, 10.1088/1361-6528/ab4241 Ibrahim, 2020, A study on microwave absorption properties of carbon black and Ni0.6Zn0.4Fe2O4 nanocomposites by tuning the matching-absorbing layer structures, Sci. Rep., 10, 3135, 10.1038/s41598-020-60107-1 Zhu, 2011, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries, ACS Nano, 5, 3333, 10.1021/nn200493r Dulinska-Litewka, 2019, Superparamagnetic iron oxide nanoparticles-current and prospective medical applications, Materials, 12 Nabavinia, 2020, Recent progress in iron oxide nanoparticles as therapeutic magnetic agents for cancer treatment and tissue engineering, ACS Applied Bio Materials, 3, 8172, 10.1021/acsabm.0c00947 Hauser, 2016, Targeted iron oxide nanoparticles for the enhancement of radiation therapy, Biomaterials, 105, 127, 10.1016/j.biomaterials.2016.07.032 Liu, 2016, Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure, AIP Adv., 6 Liu, 2018, Iron nanoparticles with tunable tetragonal structure and magnetic properties, Phys. Rev. Matter, 2 Medvedovski, 2016, Iron boride-based thermal diffusion coatings for tribo-corrosion oil production applications, Ceram. Int., 42, 3190, 10.1016/j.ceramint.2015.10.109 Yu, 2005, FeB/FeB phase transformation during SPS pack-boriding: boride layer growth kinetics, Acta Mater., 53, 2361, 10.1016/j.actamat.2005.01.043 Li, 2015, Sintered SrFe12O19/Fe–B composites: precipitation of α-Fe and magnetic properties, J. Alloys Compd., 649, 760, 10.1016/j.jallcom.2015.07.134 Abrenica, 2016, Dip-coating synthesis of high-surface area nanostructured FeB for direct usage as anode in metal/metalloid-air battery, Curr. Appl. Phys., 16, 1075, 10.1016/j.cap.2016.06.010 Ocon, 2013, Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe–B nanoparticles, J. Power Sources, 243, 444, 10.1016/j.jpowsour.2013.06.019 Kapfenberger, 2006, Structure refinements of iron borides Fe2B and FeB, Z. für Kristallogr. - Cryst. Mater., 221 Calka, 1991, Formation of amorphous Fe‐B alloys by mechanical alloying, Appl. Phys. Lett., 58, 119, 10.1063/1.104974 Rodríguez Torres, 1995, Mechanical grinding of iron borides, Mater. Sci. Forum, 179–181, 103, 10.4028/www.scientific.net/MSF.179-181.103 Fan, 1995, Nanocrystallization of Fe80B20 By ball milling, Nanostruct. Mater., 5, 433, 10.1016/0965-9773(95)00255-D Hamayun, 2018, Magnetic and magnetothermal studies of iron boride (FeB) nanoparticles, J. Magn. Magn Mater., 451, 407, 10.1016/j.jmmm.2017.11.088 Simsek, 2017, Mechanochemical processing and microstructural characterization of pure Fe 2 B nanocrystals, Adv. Powder Technol., 28, 3056, 10.1016/j.apt.2017.09.017 Mertdinç, 2018, Mechanochemically synthesized Fe2B nanoparticles embedded in SiO2 nanospheres, Ceram. Int., 44, 14834, 10.1016/j.ceramint.2018.05.116 Williamson, 1953, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1, 22, 10.1016/0001-6160(53)90006-6 Blochl, 1994, Projector augmented-wave method, Phys. Rev. B Condens. Matter, 50, 17953, 10.1103/PhysRevB.50.17953 Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133 Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Surucu, 2020, Lattice dynamical and thermo-elastic properties of M2AlB (M = V, Nb, Ta) MAX phase borides, J. Alloys Compd., 819 Rathi, 2019, Synthesis of nanocrystalline equiatomic nickel-cobalt-iron alloy powders by mechanical alloying and their structural and magnetic characterization, J. Magn. Magn Mater., 469, 467, 10.1016/j.jmmm.2018.09.002 Anand Sekhar, 2019, Microstructure and mechanical properties of Ti-Al-Ni-Co-Fe based high entropy alloys prepared by powder metallurgy route, J. Alloys Compd., 787, 123, 10.1016/j.jallcom.2019.02.083 Kumar, 2020, Nano-crystalline high entropy alloys prepared by mechanical alloying, Mater. Today: Proceedings, 27, 1310 Suryanarayana, 2001, Mechanical alloying and milling, Prog. Mater. Sci., 46, 1, 10.1016/S0079-6425(99)00010-9 Raanaei, 2020, Nanostructured iron rich (Fe-Co)70 Mn10 Ti10 B10 mechanically alloyed powder: synthesis and characterizations studies, J. Magn. Magn Mater., 508, 10.1016/j.jmmm.2020.166870 Baris, 2016, Mechanochemical synthesis and characterization of pure Co2B nanocrystals, Bull. Mater. Sci., 39, 1119, 10.1007/s12034-016-1231-x Yousefi, 2014, Correlation between structural parameters and magnetic properties of ball milled nano-crystalline Fe–Co–Si powders, Adv. Powder Technol., 25, 752, 10.1016/j.apt.2013.11.008 Hadef, 2013, Investigation of mechanosynthesized Fe50Ni40Al10 powders, J. Magn. Magn Mater., 343, 214, 10.1016/j.jmmm.2013.04.074 Fan, 1995, Nanocrystallization of Fe80B20 By ball milling, Nanostructured Materials, Nanostructured Materials, 5, 433, 10.1016/0965-9773(95)00255-D Edström, 2015, Magnetic properties of(Fe1−xCox)2Balloys and the effect of doping by5delements, Phys. Rev. B, 92 Zákutná, 2020, Field dependence of magnetic disorder in nanoparticles, Phys. Rev., X, 10 Pratt, 2014, Enhanced oxidation of nanoparticles through strain-mediated ionic transport, Nat. Mater., 13, 26, 10.1038/nmat3785 Kodama, 1996, Surface spin disorder in NiFe2O4 nanoparticles, Phys. Rev. Lett., 77, 394, 10.1103/PhysRevLett.77.394 Luna, 2003, Multidomain to single-domain transition for uniform Co80Ni20nanoparticles, Nanotechnology, 14, 268, 10.1088/0957-4484/14/2/332 Rosensweig, 2002, Heating magnetic fluid with alternating magnetic field, J. Magn. Magn Mater., 252, 370, 10.1016/S0304-8853(02)00706-0 Kallumadil, 2009, Suitability of commercial colloids for magnetic hyperthermia, J. Magn. Magn Mater., 321, 1509, 10.1016/j.jmmm.2009.02.075