Exergaming for balance training of elderly: state of the art and future developments

Journal of NeuroEngineering and Rehabilitation - Tập 10 - Trang 1-12 - 2013
Mike van Diest1,2, Claudine JC Lamoth2, Jan Stegenga1, Gijsbertus J Verkerke3,4, Klaas Postema3
1INCAS, Dr. Nassaulaan 9, The Netherlands
2Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
3Center for Rehabilitation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
4Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands

Tóm tắt

Fall injuries are responsible for physical dysfunction, significant disability, and loss of independence among elderly. Poor postural control is one of the major risk factors for falling but can be trained in fall prevention programs. These however suffer from low therapy adherence, particularly if prevention is the goal. To provide a fun and motivating training environment for elderly, exercise games, or exergames, have been studied as balance training tools in the past years. The present paper reviews the effects of exergame training programs on postural control of elderly reported so far. Additionally we aim to provide an in-depth discussion of technologies and outcome measures utilized in exergame studies. Thirteen papers were included in the analysis. Most of the reviewed studies reported positive results with respect to improvements in balance ability after a training period, yet few reached significant levels. Outcome measures for quantification of postural control are under continuous dispute and no gold standard is present. Clinical measures used in the studies reviewed are well validated yet only give a global indication of balance ability. Instrumented measures were unable to detect small changes in balance ability as they are mainly based on calculating summary statistics, thereby ignoring the time-varying structure of the signals. Both methods only allow for measuring balance after the exergame intervention program. Current developments in sensor technology allow for accurate registration of movements and rapid analysis of signals. We propose to quantify the time-varying structure of postural control during gameplay using low-cost sensor systems. Continuous monitoring of balance ability leaves the user unaware of the measurements and allows for generating user-specific exergame training programs and feedback, both during one game and in timeframes of weeks or months. This approach is unique and unlocks the as of yet untapped potential of exergames as balance training tools for community dwelling elderly.

Tài liệu tham khảo

Tinetti ME, Speechley M, Ginter SF: Risk factors for falls among elderly persons living in the community. N Engl J Med 1988, 319: 1701-1707. 10.1056/NEJM198812293192604

Sterling DA, O’Connor JA, Bonadies J: Geriatric falls: injury severity is high and disproportionate to mechanism. J Trauma 2001, 50: 116-119. 10.1097/00005373-200101000-00021

Tinetti ME, Williams CS: Falls, injuries due to falls, and the risk of admission to a nursing home. N Engl J Med 1997, 337: 1279-1284. 10.1056/NEJM199710303371806

Delbaere K, Close JCT, Heim J, Sachdev PS, Brodaty H, Slavin MJ, Kochan NA, Lord SR: A multifactorial approach to understanding fall risk in older people. J Am Geriatr Soc 2010, 58: 1679-1685. 10.1111/j.1532-5415.2010.03017.x

Pollock AS, Durward BR, Rowe PJ, Paul JP: What is balance? Clin Rehabil 2000, 14: 402-406. 10.1191/0269215500cr342oa

Laughton CA, Slavin M, Katdare K, Nolan L, Bean JF, Kerrigan DC, Phillips E, Lipsitz LA, Collins JJ: Aging, muscle activity, and balance control: physiologic changes associated with balance impairment. Gait Posture 2003, 18: 101-108. 10.1016/S0966-6362(02)00200-X

Horak FB, Shupert CL, Mirka A: Components of postural dyscontrol in the elderly: a review. Neurobiol Aging 1989, 10: 727-738. 10.1016/0197-4580(89)90010-9

Brown LA, Shumway-Cook A, Woollacott MH: Attentional demands and postural recovery: the effects of aging. J Gerontol A Biol Sci Med Sci 1999, 54: 165-171. 10.1093/gerona/54.4.M165

Teasdale N, Simoneau M: Attentional demands for postural control: the effects of aging and sensory reintegration. Gait & posture 2001, 14: 203-210. 10.1016/S0966-6362(01)00134-5

Lamoth CJ, van Deudekom FJ, van Campen JP, van Campen JP, van Appels BA, de Pijnappels M: Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J Neuroeng Rehabil 2011, 8: 2. 10.1186/1743-0003-8-2

Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG, Close JCT: Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc 2008, 56: 2234-2243. 10.1111/j.1532-5415.2008.02014.x

Fitzgerald D, Trakarnratanakul N, Smyth B, Caulfield B: Effects of a wobble board-based therapeutic exergaming system for balance training on dynamic postural stability and intrinsic motivation levels. J Orthop Sports Phys Ther 2010, 40: 11-19. 10.2519/jospt.2010.3121

Lamoth CJC, Alingh R, Caljouw S: Exergaming for elderly: Effects of different types of game feedback on performance of a balance task. Stud Health Technol Inform 2012. in press

Smith ST, Sherrington C, Studenski S, Schoene D, Lord SR: A novel Dance Dance Revolution (DDR) system for in-home training of stepping ability: basic parameters of system use by older adults. Br J Sports Med 2011, 45: 441-445. 10.1136/bjsm.2009.066845

Kosse N, Caljouw S, Vuijk P, CJC L: Exergaming: interactive balance training in healthy community-dwelling elderly. Journal of Cyber Therapy & Rehabilitation 2011, 4: 399-407.

Saposnik G, Teasell R, Mamdani M, Hall J, McIlroy W, Cheung D, Thorpe KE, Cohen LG, Bayley M: Effectiveness of Virtual Reality Using Wii Gaming Technology in Stroke Rehabilitation. A Pilot Randomized Clinical Trial and Proof of Principle. Stroke 2010, 41: 1477-1484. 10.1161/STROKEAHA.110.584979

Analog Devices Inc: Small, Low Power, 3-axis ±3 g iMEMS ® Accelerometer. Norwood: Analog Devices Inc; 2007.

Billis AS, Konstantinidis EI, Mouzakidis C, Tsolaki MN, Pappas C, Bamidis PD: A Game-Like Interface for Training Seniors ’ Dynamic Balance and Coordination. IFMBE Proc 2010, 29: 691-694. 10.1007/978-3-642-13039-7_174

Bisson E, Contant B, Sveistrup H, Lajoie Y: Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training. Cyberpsychol Behav 2007, 10: 16-23. 10.1089/cpb.2006.9997

Lange B, Flynn S, Proffitt R, Chang C-Y, Rizzo AS: Development of an interactive game-based rehabilitation tool for dynamic balance training. Top Stroke Rehabil 2010, 17: 345-352. 10.1310/tsr1705-345

Nitz JC, Kuys S, Isles R, Fu S: Is the Wii Fit a new-generation tool for improving balance, health and well-being? A pilot study. Climacteric 2010, 13: 487-491. 10.3109/13697130903395193

Flynn S, Palma P, Bender A: Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report. J Neurol Phys Ther 2007, 31: 180-189. 10.1097/NPT.0b013e31815d00d5

Lange B, Flynn S, Rizzo A: Initial usability assessment of off-the-shelf video game consoles for clinical game-based motor rehabilitation. Phys Ther Rev 2009, 14: 355-363. 10.1179/108331909X12488667117258

Rand D, Kizony R, Weiss PTL: The Sony PlayStation II EyeToy: low-cost virtual reality for use in rehabilitation. J Neurol Phys Ther 2008, 32: 155-163. 10.1097/NPT.0b013e31818ee779

Khoshelham K, Elberink SO: Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications. Sensors 2012, 12: 1437-1454. 10.3390/s120201437

Steffen TM, Hacker TA, Mollinger L: Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Physical therapy 2002, 82: 128-137.

Tyson SF, DeSouza LH: Development of the Brunel Balance Assessment: a new measure of balance disability post stroke. Clin Rehabil 2004, 18: 801-810. 10.1191/0269215504cr744oa

Perron M, Malouin F, Moffet H: Assessing advanced locomotor recovery after total hip arthroplasty with the timed stair test. Clin Rehabil 2003, 17: 780-786. 10.1191/0269215503cr696oa

Hill KD: A New Test of Dynamic Standing Balance for Stroke Patients: Reliability, Validity and Comparison with Healthy Elderly. Physiother Can 1996, 48: 257-262. 10.3138/ptc.48.4.257

McDowell BC, Kerr C, Parkes J, Cosgrove A: Validity of a 1 minute walk test for children with cerebral palsy. Dev Med Child Neurol 2005, 47: 744-748. 10.1017/S0012162205001568

Van Hedel HJ, Wirz M, Dietz V: Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch Phys Med Rehabil 2005, 86: 190-196. 10.1016/j.apmr.2004.02.010

Kinzey SJ, Armstrong CW: The reliability of the star-excursion test in assessing dynamic balance. J Orthop Sports Phys Ther 1998, 27: 356-360. 10.2519/jospt.1998.27.5.356

Hess RJ, Brach JS, Piva SR, VanSwearingen JM: Walking skill can be assessed in older adults: validity of the Figure-of-8 Walk Test. Phys Ther 2010, 90: 89-99. 10.2522/ptj.20080121

Ware JE, Sherbourne CD: The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992, 30: 473-483. 10.1097/00005650-199206000-00002

Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C: Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age ageing 2005, 34: 614-619. 10.1093/ageing/afi196

Lange B, Koenig S, Chang C-Y, McConnell E, Suma E, Bolas M, Rizzo A: Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil Rehabil 2012, 34: 1863-1870. 10.3109/09638288.2012.670029

Blum L, Korner-Bitensky N: Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Phys Ther 2008, 88: 559-566. 10.2522/ptj.20070205

Riley MA, Balasubramaniam R, Turvey MT: Recurrence quantification analysis of postural fluctuations. Gait & posture 1999, 9: 65-78. 10.1016/S0966-6362(98)00044-7

Peng CK, Havlin S, Stanley HE, Goldberger AL: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos (Woodbury, N.Y.) 1995, 5: 82-87. 10.1063/1.166141

Bilodeau E: Motor-skills learning. Annu Rev Psychol 1961, 12: 243-280. 10.1146/annurev.ps.12.020161.001331