thumbnail

Journal of NeuroEngineering and Rehabilitation

  1743-0003

 

 

Cơ quản chủ quản:  BioMed Central Ltd. , BMC

Lĩnh vực:
Health InformaticsRehabilitation

Phân tích ảnh hưởng

Thông tin về tạp chí

 

Các bài báo tiêu biểu

The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications
Tập 3 - Trang 1-11 - 2006
Lars Mündermann, Stefano Corazza, Thomas P Andriacchi
Over the centuries the evolution of methods for the capture of human movement has been motivated by the need for new information on the characteristics of normal and pathological human movement. This study was motivated in part by the need of new clinical approaches for the treatment and prevention of diseases that are influenced by subtle changes in the patterns movement. These clinical approaches require new methods to measure accurately patterns of locomotion without the risk of artificial stimulus producing unwanted artifacts that could mask the natural patterns of motion. Most common methods for accurate capture of three-dimensional human movement require a laboratory environment and the attachment of markers or fixtures to the body's segments. These laboratory conditions can cause unknown experimental artifacts. Thus, our understanding of normal and pathological human movement would be enhanced by a method that allows the capture of human movement without the constraint of markers or fixtures placed on the body. In this paper, the need for markerless human motion capture methods is discussed and the advancement of markerless approaches is considered in view of accurate capture of three-dimensional human movement for biomechanical applications. The role of choosing appropriate technical equipment and algorithms for accurate markerless motion capture is critical. The implementation of this new methodology offers the promise for simple, time-efficient, and potentially more meaningful assessments of human movement in research and clinical practice. The feasibility of accurately and precisely measuring 3D human body kinematics for the lower limbs using a markerless motion capture system on the basis of visual hulls is demonstrated.
Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults
Tập 21 - Trang 1-14 - 2024
Ava Lakmazaheri, Seungmoon Song, Brian B. Vuong, Blake Biskner, Deborah M. Kado, Steven H. Collins
Walking speed and energy economy tend to decline with age. Lower-limb exoskeletons have demonstrated potential to improve either measure, but primarily in studies conducted on healthy younger adults. Promising techniques like optimization of exoskeleton assistance have yet to be tested with older populations, while speed and energy consumption have yet to be simultaneously optimized for any population. We investigated the effectiveness of human-in-the-loop optimization of ankle exoskeletons with older adults. Ten healthy adults > 65 years of age (5 females; mean age: 72 ± 3 yrs) participated in approximately 240 min of training and optimization with tethered ankle exoskeletons on a self-paced treadmill. Multi-objective human-in-the-loop optimization was used to identify assistive ankle plantarflexion torque patterns that simultaneously improved self-selected walking speed and metabolic rate. The effects of optimized exoskeleton assistance were evaluated in separate trials. Optimized exoskeleton assistance improved walking performance for older adults. Both objectives were simultaneously improved; self-selected walking speed increased by 8% (0.10 m/s; p = 0.001) and metabolic rate decreased by 19% (p = 0.007), resulting in a 25% decrease in energetic cost of transport (p = 8e-4) compared to walking with exoskeletons applying zero torque. Compared to younger participants in studies optimizing a single objective, our participants required lower exoskeleton torques, experienced smaller improvements in energy use, and required more time for motor adaptation. Our results confirm that exoskeleton assistance can improve walking performance for older adults and show that multiple objectives can be simultaneously addressed through human-in-the-loop optimization.
Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads
Tập 18 Số 1 - Trang 1-13 - 2021
Bryan, Gwendolyn M., Franks, Patrick W., Song, Seungmoon, Reyes, Ricardo, O’Donovan, Meghan P., Gregorczyk, Karen N., Collins, Steven H.
Load carriage is common in a wide range of professions, but prolonged load carriage is associated with increased fatigue and overuse injuries. Exoskeletons could improve the quality of life of these professionals by reducing metabolic cost to combat fatigue and reducing muscle activity to prevent injuries. Current exoskeletons have reduced the metabolic cost of loaded walking by up to 22% relative to walking in the device with no assistance when assisting one or two joints. Greater metabolic reductions may be possible with optimized assistance of the entire leg. We used human-in the-loop optimization to optimize hip-knee-ankle exoskeleton assistance with no additional load, a light load (15% of body weight), and a heavy load (30% of body weight) for three participants. All loads were applied through a weight vest with an attached waist belt. We measured metabolic cost, exoskeleton assistance, kinematics, and muscle activity. We performed Friedman’s tests to analyze trends across worn loads and paired t-tests to determine whether changes from the unassisted conditions to the assisted conditions were significant. Exoskeleton assistance reduced the metabolic cost of walking relative to walking in the device without assistance for all tested conditions. Exoskeleton assistance reduced the metabolic cost of walking by 48% with no load (p = 0.05), 41% with the light load (p = 0.01), and 43% with the heavy load (p = 0.04). The smaller metabolic reduction with the light load may be due to insufficient participant training or lack of optimizer convergence. The total applied positive power was similar for all tested conditions, and the positive knee power decreased slightly as load increased. Optimized torque timing parameters were consistent across participants and load conditions while optimized magnitude parameters varied. Whole-leg exoskeleton assistance can reduce the metabolic cost of walking while carrying a range of loads. The consistent optimized timing parameters across participants and conditions suggest that metabolic cost reductions are sensitive to torque timing. The variable torque magnitude parameters could imply that torque magnitude should be customized to the individual, or that there is a range of useful torque magnitudes. Future work should test whether applying the load to the exoskeleton rather than the person’s torso results in larger benefits.
Rapid energy expenditure estimation for ankle assisted and inclined loaded walking
Tập 16 - Trang 1-10 - 2019
Patrick Slade, Rachel Troutman, Mykel J. Kochenderfer, Steven H. Collins, Scott L. Delp
Estimating energy expenditure with indirect calorimetry requires expensive equipment and several minutes of data collection for each condition of interest. While several methods estimate energy expenditure using correlation to data from wearable sensors, such as heart rate monitors or accelerometers, their accuracy has not been evaluated for activity conditions or subjects not included in the correlation process. The goal of our study was to develop data-driven models to estimate energy expenditure at intervals of approximately one second and demonstrate their ability to predict energetic cost for new conditions and subjects. Model inputs were muscle activity and vertical ground reaction forces, which are measurable by wearable electromyography electrodes and pressure sensing insoles. We developed models that estimated energy expenditure while walking (1) with ankle exoskeleton assistance and (2) while carrying various loads and walking on inclines. Estimates were made each gait cycle or four second interval. We evaluated the performance of the models for three use cases. The first estimated energy expenditure (in Watts) during walking conditions for subjects with some subject specific training data available. The second estimated all conditions in the dataset for a new subject not included in the training data. The third estimated new conditions for a new subject. The mean absolute percent errors in estimated energy expenditure during assisted walking conditions were 4.4%, 8.0%, and 8.1% for the three use cases, respectively. The average errors in energy expenditure estimation during inclined and loaded walking conditions were 6.1%, 9.7%, and 11.7% for the three use cases. For models not using subject-specific data, we evaluated the ability to order the magnitude of energy expenditure across conditions. The average percentage of correctly ordered conditions was 63% for assisted walking and 87% for incline and loaded walking. We have determined the accuracy of estimating energy expenditure with data-driven models that rely on ground reaction forces and muscle activity for three use cases. For experimental use cases where the accuracy of a data-driven model is sufficient and similar training data is available, standard indirect calorimetry could be replaced. The models, code, and datasets are provided for reproduction and extension of our results.
Wearable vibrotactile stimulation for upper extremity rehabilitation in chronic stroke: clinical feasibility trial using the VTS Glove
Tập 18 - Trang 1-11 - 2021
Caitlyn E. Seim, Steven L. Wolf, Thad E. Starner
Evaluate the feasibility and potential impacts on hand function using a wearable stimulation device (the VTS Glove) which provides mechanical, vibratory input to the affected limb of chronic stroke survivors. A double-blind, randomized, controlled feasibility study including sixteen chronic stroke survivors (mean age: 54; 1-13 years post-stroke) with diminished movement and tactile perception in their affected hand. Participants were given a wearable device to take home and asked to wear it for three hours daily over eight weeks. The device intervention was either (1) the VTS Glove, which provided vibrotactile stimulation to the hand, or (2) an identical glove with vibration disabled. Participants were randomly assigned to each condition. Hand and arm function were measured weekly at home and in local physical therapy clinics. Participants using the VTS Glove showed significantly improved Semmes-Weinstein monofilament exam results, reduction in Modified Ashworth measures in the fingers, and some increased voluntary finger flexion, elbow and shoulder range of motion. Vibrotactile stimulation applied to the disabled limb may impact tactile perception, tone and spasticity, and voluntary range of motion. Wearable devices allow extended application and study of stimulation methods outside of a clinical setting.
Optimized hip–knee–ankle exoskeleton assistance at a range of walking speeds
Tập 18 - Trang 1-12 - 2021
Gwendolyn M. Bryan, Patrick W. Franks, Seungmoon Song, Alexandra S. Voloshina, Ricardo Reyes, Meghan P. O’Donovan, Karen N. Gregorczyk, Steven H. Collins
Autonomous exoskeletons will need to be useful at a variety of walking speeds, but it is unclear how optimal hip–knee–ankle exoskeleton assistance should change with speed. Biological joint moments tend to increase with speed, and in some cases, optimized ankle exoskeleton torques follow a similar trend. Ideal hip–knee–ankle exoskeleton torque may also increase with speed. The purpose of this study was to characterize the relationship between walking speed, optimal hip–knee–ankle exoskeleton assistance, and the benefits to metabolic energy cost. We optimized hip–knee–ankle exoskeleton assistance to reduce metabolic cost for three able-bodied participants walking at 1.0 m/s, 1.25 m/s and 1.5 m/s. We measured metabolic cost, muscle activity, exoskeleton assistance and kinematics. We performed Friedman’s tests to analyze trends across walking speeds and paired t-tests to determine if changes from the unassisted conditions to the assisted conditions were significant. Exoskeleton assistance reduced the metabolic cost of walking compared to wearing the exoskeleton with no torque applied by 26%, 47% and 50% at 1.0, 1.25 and 1.5 m/s, respectively. For all three participants, optimized exoskeleton ankle torque was the smallest for slow walking, while hip and knee torque changed slightly with speed in ways that varied across participants. Total applied positive power increased with speed for all three participants, largely due to increased joint velocities, which consistently increased with speed. Exoskeleton assistance is effective at a range of speeds and is most effective at medium and fast walking speeds. Exoskeleton assistance was less effective for slow walking, which may explain the limited success in reducing metabolic cost for patient populations through exoskeleton assistance. Exoskeleton designers may have more success when targeting activities and groups with faster walking speeds. Speed-related changes in optimized exoskeleton assistance varied by participant, indicating either the benefit of participant-specific tuning or that a wide variety of torque profiles are similarly effective.
OpenSense: An open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations
Tập 19 - Trang 1-11 - 2022
Mazen Al Borno, Johanna O’Day, Vanessa Ibarra, James Dunne, Ajay Seth, Ayman Habib, Carmichael Ong, Jennifer Hicks, Scott Uhlrich, Scott Delp
The ability to measure joint kinematics in natural environments over long durations using inertial measurement units (IMUs) could enable at-home monitoring and personalized treatment of neurological and musculoskeletal disorders. However, drift, or the accumulation of error over time, inhibits the accurate measurement of movement over long durations. We sought to develop an open-source workflow to estimate lower extremity joint kinematics from IMU data that was accurate and capable of assessing and mitigating drift. We computed IMU-based estimates of kinematics using sensor fusion and an inverse kinematics approach with a constrained biomechanical model. We measured kinematics for 11 subjects as they performed two 10-min trials: walking and a repeated sequence of varied lower-extremity movements. To validate the approach, we compared the joint angles computed with IMU orientations to the joint angles computed from optical motion capture using root mean square (RMS) difference and Pearson correlations, and estimated drift using a linear regression on each subject’s RMS differences over time. IMU-based kinematic estimates agreed with optical motion capture; median RMS differences over all subjects and all minutes were between 3 and 6 degrees for all joint angles except hip rotation and correlation coefficients were moderate to strong (r = 0.60–0.87). We observed minimal drift in the RMS differences over 10 min; the average slopes of the linear fits to these data were near zero (− 0.14–0.17 deg/min). Our workflow produced joint kinematics consistent with those estimated by optical motion capture, and could mitigate kinematic drift even in the trials of continuous walking without rest, which may obviate the need for explicit sensor recalibration (e.g. sitting or standing still for a few seconds or zero-velocity updates) used in current drift-mitigation approaches when studying similar activities. This could enable long-duration measurements, bringing the field one step closer to estimating kinematics in natural environments.
Sub-sensory vibratory noise augments the physiologic complexity of postural control in older adults
Tập 13 - Trang 1-8 - 2016
Junhong Zhou, Lewis Lipsitz, Daniel Habtemariam, Brad Manor
Postural control requires numerous inputs interacting across multiple temporospatial scales. This organization, evidenced by the “complexity” contained within standing postural sway fluctuations, enables diverse system functionality. Age-related reduction of foot-sole somatosensation reduces standing postural sway complexity and diminishes the functionality of the postural control system. Sub-sensory vibrations applied to the foot soles reduce the speed and magnitude of sway and improve mobility in older adults. We thus hypothesized that these vibration-induced improvements to the functionality of the postural control system are associated with an increase in the standing postural sway complexity. Twelve healthy older adults aged 74 ± 8 years completed three visits to test the effects of foot sole vibrations at 0 % (i.e., no vibration), 70 and 85 % of the sensory threshold. Postural sway was assessed during eyes-open and eyes-closed standing. The complexity of sway time-series was quantified using multiscale entropy. The timed up-and-go (TUG) was completed to assess mobility. When standing without vibration, participants with lower foot sole vibratory thresholds (better sensation) had greater mediolateral (ML) sway complexity (r 2 = 0.49, p < 0.001), and those with greater ML sway complexity had faster TUG times (better mobility) (r 2 = 0.38, p < 0.001). Foot sole vibrations at 70 and 85 % of sensory threshold increased ML sway complexity during eyes-open and eyes-closed standing (p < 0.0001). Importantly, these vibration-induced increases in complexity correlated with improvements in the TUG test of mobility (r 2 = 0.15 ~ 0.42, p < 0.001 ~ 0.03). Sub-sensory foot sole vibrations augment the postural control system functionality and such beneficial effects are reflected in an increase in the physiologic complexity of standing postural sway dynamics.
Interactive wiimote gaze stabilization exercise training system for patients with vestibular hypofunction
Tập 9 - Trang 1-10 - 2012
Po-Yin Chen, Wan-Ling Hsieh, Shun-Hwa Wei, Chung-Lan Kao
Peripheral vestibular hypofunction is a major cause of dizziness. When complicated with postural imbalance, this condition can lead to an increased incidence of falls. In traditional clinical practice, gaze stabilization exercise is commonly used to rehabilitate patients. In this study, we established a computer-aided vestibular rehabilitation system by coupling infrared LEDs to an infrared receiver. This system enabled the subjects’ head-turning actions to be quantified, and the training was performed using vestibular exercise combined with computer games and interactive video games that simulate daily life activities. Three unilateral and one bilateral vestibular hypofunction patients volunteered to participate in this study. The participants received 30 minutes of computer-aided vestibular rehabilitation training 2 days per week for 6 weeks. Pre-training and post-training assessments were completed, and a follow-up assessment was completed 1 month after the end of the training period. After 6 weeks of training, significant improvements in balance and dynamic visual acuity (DVA) were observed in the four participants. Self-reports of dizziness, anxiety and depressed mood all decreased significantly. Significant improvements in self-confidence and physical performance were also observed. The effectiveness of this training was maintained for at least 1 month after the end of the training period. Real-time monitoring of training performance can be achieved using this rehabilitation platform. Patients demonstrated a reduction in dizziness symptoms after 6 weeks of training with this short-term interactive game approach. This treatment paradigm also improved the patients’ balance function. This system could provide a convenient, safe and affordable treatment option for clinical practitioners.
Impact of sub-thalamic nucleus deep brain stimulation on dual tasking gait in Parkinson’s disease
Tập 10 - Trang 1-10 - 2013
Eliraz Seri-Fainshtat, Zvi Israel, Aner Weiss, Jeffrey M Hausdorff
The beneficial effects of bilateral sub-thalamic nucleus deep brain stimulation on motor function and gait in advanced Parkinson’s disease are established. Less is known about the effect of stimulation on cognitive function and the capacity to walk while dual tasking, an ability that has been related to fall risk. Everyday walking takes place in complex environments that often require multi-tasking. Hence, dual tasking gait performance reflects everyday ambulation as well as gait automaticity. The purpose of this study was to examine the impact of sub-thalamic nucleus deep brain stimulation on dual task walking in patients with advanced Parkinson’s disease. Gait was assessed using a performance-based test and by quantifying single-task and dual task walking conditions in 28 patients with advanced Parkinson’s disease. These tests were conducted in 4 conditions: “OFF” medication, with the stimulator turned on and off, and “ON” medication, with the stimulator turned on and off. A previously validated, computerized neuro-psychological battery assessed executive function, attention and memory “OFF” and “ON” deep brain stimulation, after subjects took their anti-Parkinsonian medications. Stimulation improved motor function and the spatiotemporal parameters of gait (e.g., gait speed) during both single-task and dual task walking conditions. Attention improved, but executive function did not. The dual task effect on gait did not change in response to stimulation. For example, during serial 3 subtractions, gait speed was reduced by -0.20 ± 0.14 m/sec while OFF DBS and OFF meds and by -0.22 ± 0.14 m/sec when the DBS was turned on (p = 0.648). Similarly, ON medication, serial 3 subtractions reduced gait speed by -0.20 ± 0.16 m/sec OFF DBS and by -0.22 ± 0.09 m/sec ON DBS (p = 0.543). Bilateral sub-thalamic nucleus deep brain stimulation improves motor symptoms, certain features of gait and even some aspects of cognitive function. However, stimulation apparently fails to reduce the negative impact of a dual task on walking abilities. These findings provide new insight into the effects of deep brain stimulation on gait during cognitively challenging conditions and everyday walking.