A practical method for calculating largest Lyapunov exponents from small data sets
Tài liệu tham khảo
Abarbanel, 1990, Prediction in chaotic nonlinear systems: methods for time series with broadband Fourier spectra, Phys. Rev. A, 41, 1782, 10.1103/PhysRevA.41.1782
Abraham, 1986, Calculating the dimension of attractors from small data sets, Phys. Lett. A, 114, 217, 10.1016/0375-9601(86)90210-0
Albano, 1988, Singular-value decomposition and the Grassberger-Procaccia algorithm, Phys. Rev. A, 38, 3017, 10.1103/PhysRevA.38.3017
Albano, 1991, Using higher-order correlations to define an embedding window, Physica D, 54, 85, 10.1016/0167-2789(91)90110-U
Benettin, 1979, Kolmogorov entropy of a dynamical system with increasing number of degrees of freedom, Phys. Rev. A, 19, 2454, 10.1103/PhysRevA.19.2454
Bennettin, 1976, Kolmogorov entropy and numerical experiments, Phys. Rev. A, 14, 2338, 10.1103/PhysRevA.14.2338
Briggs, 1990, An improved method for estimating Lyapunov exponents of chaotic time series, Phys. Lett. A, 151, 27, 10.1016/0375-9601(90)90841-B
Broomhead, 1986, Extracting qualitative dynamics from experimental data, Physica D, 20, 217, 10.1016/0167-2789(86)90031-X
Brown, 1991, Computing the Lyapunov spectrum of a dynamical system from observed time series, Phys. Rev. A, 43, 2787, 10.1103/PhysRevA.43.2787
Casdagli, 1989, Nonlinear prediction of chaotic time series, Physica D, 35, 335, 10.1016/0167-2789(89)90074-2
Chen, 1988, Empirical and theoretical evidence of economic chaos, Sys. Dyn. Rev., 4, 81, 10.1002/sdr.4260040106
Deppisch, 1991, Hierarchical training of neural networks and prediction of chaotic time series, Phys. Lett. A, 158, 57, 10.1016/0375-9601(91)90340-E
Eckmann, 1986, Lyapunov exponents from time series, Phys. Rev. A, 34, 4971, 10.1103/PhysRevA.34.4971
Eckmann, 1992, Fundamental limtations for estimating dimensions and Lyapunov exponents in dynamical systems, Physica D, 56, 185, 10.1016/0167-2789(92)90023-G
Eckmann, 1985, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617, 10.1103/RevModPhys.57.617
Ellner, 1991, Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data, Phys. Lett. A, 153, 357, 10.1016/0375-9601(91)90958-B
Farmer, 1987, Predicting chaotic time series, Phys. Rev. Lett., 59, 845, 10.1103/PhysRevLett.59.845
Frank, 1990, Chaotic time series analysis of epileptic seizures, Physica D, 46, 427, 10.1016/0167-2789(90)90103-V
Fraser, 1986, Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 1134, 10.1103/PhysRevA.33.1134
Grassberger, 1983, Characterization of strange attractors, Phys. Rev. Lett., 50, 346, 10.1103/PhysRevLett.50.346
Grassberger, 1983, Estimation of the Kolmogorov entropy from a chaotic signal, Phys. Rev. A, 28, 2591, 10.1103/PhysRevA.28.2591
Hénon, 1976, A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50, 69, 10.1007/BF01608556
Liebert, 1989, Proper choice of the time delay for the analysis of chaotic time series, Phys. Lett. A, 142, 107, 10.1016/0375-9601(89)90169-2
Lorenz, 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130, 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Mackey, 1977, Oscillation and chaos in physiological control systems, Science, 197, 287, 10.1126/science.267326
Oseledec, 1968, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19, 197
Packard, 1980, Geometry from a time series, Phys. Rev. Lett., 45, 712, 10.1103/PhysRevLett.45.712
Ramsey, 1990, The statistical properties of dimension calculations using small data sets, Nonlinearity, 3, 155, 10.1088/0951-7715/3/1/009
Rauf, 1991, Calculation of Lyapunov exponents through nonlinear adaptive filters
Rössler, 1979, An equation for hyperchaos, Phys. Lett. A, 71, 155, 10.1016/0375-9601(79)90150-6
Rössler, 1976, An equation for continuous chaos, Phys. Lett. A, 57, 397, 10.1016/0375-9601(76)90101-8
Sano, 1985, Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett., 55, 1082, 10.1103/PhysRevLett.55.1082
Sato, 1987, Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems, Prog. Theor. Phys., 77, 1, 10.1143/PTP.77.1
Shimada, 1979, A numerical approach to ergodic problem of dissipative dynamical systems, Prog. Theor. Phys., 61, 1605, 10.1143/PTP.61.1605
Stoop, 1991, Calculation of Lyapunov exponents avoiding spurious elements, Physica D, 50, 89, 10.1016/0167-2789(91)90082-K
Sugihara, 1990, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, 344, 734, 10.1038/344734a0
Takens, 1981, Detecting strange attractors in turbulence, Lecture Notes in Mathematics, Vol. 898, 366, 10.1007/BFb0091924
Wales, 1991, Calculating the rate loss of information from chaotic time series by forecasting, Nature, 350, 485, 10.1038/350485a0
Wolf, 1985, Determining Lyapunov exponents from a time series, Physica D, 16, 285, 10.1016/0167-2789(85)90011-9
Wright, 1984, Method for calculating a Lyapunov exponent, Phys. Rev. A, 29, 2924, 10.1103/PhysRevA.29.2924
Zeng, 1991, Estimating the Lyapunov-exponent spectrum from short time series of low precision, Phys. Rev. Lett., 66, 3229, 10.1103/PhysRevLett.66.3229