A practical method for calculating largest Lyapunov exponents from small data sets

Physica D: Nonlinear Phenomena - Tập 65 - Trang 117-134 - 1993
Michael T. Rosenstein1, James J. Collins1, Carlo J. De Luca1
1NeuroMuscular Research Center and Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA

Tài liệu tham khảo

Abarbanel, 1990, Prediction in chaotic nonlinear systems: methods for time series with broadband Fourier spectra, Phys. Rev. A, 41, 1782, 10.1103/PhysRevA.41.1782 Abraham, 1986, Calculating the dimension of attractors from small data sets, Phys. Lett. A, 114, 217, 10.1016/0375-9601(86)90210-0 Albano, 1988, Singular-value decomposition and the Grassberger-Procaccia algorithm, Phys. Rev. A, 38, 3017, 10.1103/PhysRevA.38.3017 Albano, 1991, Using higher-order correlations to define an embedding window, Physica D, 54, 85, 10.1016/0167-2789(91)90110-U Benettin, 1979, Kolmogorov entropy of a dynamical system with increasing number of degrees of freedom, Phys. Rev. A, 19, 2454, 10.1103/PhysRevA.19.2454 Bennettin, 1976, Kolmogorov entropy and numerical experiments, Phys. Rev. A, 14, 2338, 10.1103/PhysRevA.14.2338 Briggs, 1990, An improved method for estimating Lyapunov exponents of chaotic time series, Phys. Lett. A, 151, 27, 10.1016/0375-9601(90)90841-B Broomhead, 1986, Extracting qualitative dynamics from experimental data, Physica D, 20, 217, 10.1016/0167-2789(86)90031-X Brown, 1991, Computing the Lyapunov spectrum of a dynamical system from observed time series, Phys. Rev. A, 43, 2787, 10.1103/PhysRevA.43.2787 Casdagli, 1989, Nonlinear prediction of chaotic time series, Physica D, 35, 335, 10.1016/0167-2789(89)90074-2 Chen, 1988, Empirical and theoretical evidence of economic chaos, Sys. Dyn. Rev., 4, 81, 10.1002/sdr.4260040106 Deppisch, 1991, Hierarchical training of neural networks and prediction of chaotic time series, Phys. Lett. A, 158, 57, 10.1016/0375-9601(91)90340-E Eckmann, 1986, Lyapunov exponents from time series, Phys. Rev. A, 34, 4971, 10.1103/PhysRevA.34.4971 Eckmann, 1992, Fundamental limtations for estimating dimensions and Lyapunov exponents in dynamical systems, Physica D, 56, 185, 10.1016/0167-2789(92)90023-G Eckmann, 1985, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617, 10.1103/RevModPhys.57.617 Ellner, 1991, Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data, Phys. Lett. A, 153, 357, 10.1016/0375-9601(91)90958-B Farmer, 1987, Predicting chaotic time series, Phys. Rev. Lett., 59, 845, 10.1103/PhysRevLett.59.845 Frank, 1990, Chaotic time series analysis of epileptic seizures, Physica D, 46, 427, 10.1016/0167-2789(90)90103-V Fraser, 1986, Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33, 1134, 10.1103/PhysRevA.33.1134 Grassberger, 1983, Characterization of strange attractors, Phys. Rev. Lett., 50, 346, 10.1103/PhysRevLett.50.346 Grassberger, 1983, Estimation of the Kolmogorov entropy from a chaotic signal, Phys. Rev. A, 28, 2591, 10.1103/PhysRevA.28.2591 Hénon, 1976, A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50, 69, 10.1007/BF01608556 Liebert, 1989, Proper choice of the time delay for the analysis of chaotic time series, Phys. Lett. A, 142, 107, 10.1016/0375-9601(89)90169-2 Lorenz, 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130, 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 Mackey, 1977, Oscillation and chaos in physiological control systems, Science, 197, 287, 10.1126/science.267326 Oseledec, 1968, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19, 197 Packard, 1980, Geometry from a time series, Phys. Rev. Lett., 45, 712, 10.1103/PhysRevLett.45.712 Ramsey, 1990, The statistical properties of dimension calculations using small data sets, Nonlinearity, 3, 155, 10.1088/0951-7715/3/1/009 Rauf, 1991, Calculation of Lyapunov exponents through nonlinear adaptive filters Rössler, 1979, An equation for hyperchaos, Phys. Lett. A, 71, 155, 10.1016/0375-9601(79)90150-6 Rössler, 1976, An equation for continuous chaos, Phys. Lett. A, 57, 397, 10.1016/0375-9601(76)90101-8 Sano, 1985, Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett., 55, 1082, 10.1103/PhysRevLett.55.1082 Sato, 1987, Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems, Prog. Theor. Phys., 77, 1, 10.1143/PTP.77.1 Shimada, 1979, A numerical approach to ergodic problem of dissipative dynamical systems, Prog. Theor. Phys., 61, 1605, 10.1143/PTP.61.1605 Stoop, 1991, Calculation of Lyapunov exponents avoiding spurious elements, Physica D, 50, 89, 10.1016/0167-2789(91)90082-K Sugihara, 1990, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, 344, 734, 10.1038/344734a0 Takens, 1981, Detecting strange attractors in turbulence, Lecture Notes in Mathematics, Vol. 898, 366, 10.1007/BFb0091924 Wales, 1991, Calculating the rate loss of information from chaotic time series by forecasting, Nature, 350, 485, 10.1038/350485a0 Wolf, 1985, Determining Lyapunov exponents from a time series, Physica D, 16, 285, 10.1016/0167-2789(85)90011-9 Wright, 1984, Method for calculating a Lyapunov exponent, Phys. Rev. A, 29, 2924, 10.1103/PhysRevA.29.2924 Zeng, 1991, Estimating the Lyapunov-exponent spectrum from short time series of low precision, Phys. Rev. Lett., 66, 3229, 10.1103/PhysRevLett.66.3229