Stride-to-stride variability while backward counting among healthy young adults

Olivier Beauchet1, Véronique Dubost1, Françoís Herrmann2, Reto W. Kressig2
1Laboratory of Physiology and Physiopathology of Exercise and Handicap, Faculty of Medicine, University of Saint-Etienne, France
2Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland

Tóm tắt

Abstract Background

Little information exists about the involvement of attention in the control of gait rhythmicity. Variability of both stride time and stride length is closely related to the control of the rhythmic stepping mechanism. We sought 1) to determine whether backward counting while walking could provoke significant gait changes in mean values and coefficients of variation of stride velocity, stride time and stride length among healthy young adults; and 2) to establish whether change in stride-to-stride variability could be related to dual-task related stride velocity change, attention, or both.

Methods

Mean values and coefficients of variation of stride velocity, stride time and stride length were recorded using the Physilog®-system, at a self-selected walking speed in 49 healthy young adults (mean age 24.1 ± 2.8 years, women 49%) while walking alone and walking with simultaneous backward counting. Performance on backward counting was evaluated by recording the number of figures counted while sitting alone and while walking.

Results

Compared with walking alone, a significant dual-task-related decrease was found for the mean values of stride velocity (p < 0.001), along with a small but significant increase for the mean values and coefficients of variation of stride time (p < 0.001 and p = 0.015, respectively). Stride length parameters did not change significantly between both walking conditions. Dual-task-related increase of coefficient of variation of stride time was explained by changing stride velocity and variability between subjects but not by backward counting. The number of figures counted while walking decreased significantly compared to backward counting alone. Further, the dual-task related decrease of the number of enumerated figures was significantly higher than the dual-task related decrease of stride velocity (p = 0.013).

Conclusion

The observed performance-changes in gait and backward counting while dual tasking confirm that certain aspects of walking are attention-demanding in young adults. In the tested group of 49 young volunteers, dual tasking caused a small decrease in stride velocity and a slight increase in the stride-to-stride variability of stride time, while stride velocity variability was not affected by the attention-demanding task. The increase in stride time variability was apparently the result of a change in gait speed, but not a result of dual tasking. This suggests that young adults require minimal attention for the control of the rhythmic stepping mechanism while walking.

Từ khóa


Tài liệu tham khảo

Woollacott M, Shumway-Cook A: Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002, 16: 1-14. 10.1016/S0966-6362(01)00156-4.

Gage WH, Sleik RJ, Polych MA, McKenzie NC, Brown LA: The allocation of attention during locomotion is altered by anxiety. Exp Brain Res. 2003, 150: 385-394.

Lajoie Y, Teasdale N, Bard C, Fleury M: Attentional demands for static and dynamic equilibrium. Exp Brain Res. 1993, 97: 139-144. 10.1007/BF00228824.

Ebersbach G, Dimitrijevic MR, Poewe W: Influence of concurrent tasks on gait: a dual-task approach. Percept Mot Skills. 1995, 81: 107-113.

Lajoie Y, Barbeau H, Hamelin M: Attentional requirements of walking in spinal cord injured patients compared to normal subjects. Spinal Cord. 1999, 37: 245-250. 10.1038/sj.sc.3100810.

Haggard P, Cockburn J, Cock J, Fordham C, Wade D: Interference between gait and cognitive tasks in a rehabilitating neurological population. J Neurol Neurosurg Psychiatry. 2000, 69: 479-486. 10.1136/jnnp.69.4.479.

Grabiner PC, Biswas ST, Grabiner MD: Age-related changes in spatial and temporal gait variables. Arch Phys Med Rehabil. 2001, 82: 31-35. 10.1053/apmr.2001.18219.

Gabell A, Nayak US: The effect of age on variability in gait. J Gerontol. 1986, 39: 662-666.

Newell KM, Corcos DM: Variability and motor control. Issues in variability and motor control. Edited by: Newell KM, Corcos DM. 1993, Champaign: Human Kinetics, 1-12.

Nutt JG, Marsden CD, Thompson PD: Human walking and higher-level gait disorders, particularly in the elderly. Neurology. 1993, 43: 268-279.

Beauchet O, Dubost V, Aminian K, Gonthier R, Kressig RW: Dual-task Related Gait Changes in the elderly: Does The Type Of Cognitive Task matter?. J Mot Behav. 2005, 37: 259-264.

Beauchet O, Najafi B, Dubost V, Aminian K, Mourey F, Kressig RW: Age-related decline of gait control under a dual-task condition. J Am Geriatr Soc. 2003, 51: 1187-1188. 10.1046/j.1532-5415.2003.51385.x.

Brach JS, Berthold R, Craik R, Van Swearingen JM, Newman AB: Gait variability in community-dwelling older adults. J Am Geriatr Soc. 2001, 49: 1646-1650. 10.1111/j.1532-5415.2001.49274.x.

Danion F, Varraine E, Bonnard M, Pailhous J: Stride variability in human gait: the effect of stride frequency and stride length. Gait Posture. 2003, 18: 69-77. 10.1016/S0966-6362(03)00030-4.

Heiderscheit BC: Movement variability as a clinical measure for locomotion. J Applied Biomech. 2000, 16: 419-427.

Van Emmerik RE, Wagenar RC, Winogrodzka A, Wolters EC: Identification of axial rigidity during locomotion in Parkinson disease. Arch Phys Med Rehabil. 1999, 80: 186-191. 10.1016/S0003-9993(99)90119-3.

Sekiya N, Nagasaki H, Ito H, Furuna T: Optimal walking in terms of variability in step length. J Orthop Sports Phys Ther. 1997, 26: 266-272.

Aminian K, Najafi B, Bula C, Leyvraz PF, Robert P: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech. 2002, 35: 689-699. 10.1016/S0021-9290(02)00008-8.

Aminian K, Robert P, Buchser EE, Rutschmann B, Hayoz D, Depairon M: Physical activity monitoring based on accelerometry: validation and comparison with video observation. Med Biol Eng Comput. 1999, 37: 304-308. 10.1007/BF02513304.

Abernethy B: Dual-task methodology and motor skills research: some applications and methodological constraints. J Hum Mov Study. 1988, 14: 101-132.

Bloem BR, Steijns JAG, Smits-Engelsman BC: An update on falls. Curr Opin Neurol. 2003, 16: 15-26. 10.1097/00019052-200302000-00003.

Bloem BR, Valkenburg VV, Slabbekoorn M, Willemsen MD: The Multiple Tasks Test: development and normal strategies. Gait Posture. 2001, 14: 191-202. 10.1016/S0966-6362(01)00141-2.

Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL: Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease. Mov Disord. 1999, 13: 428-437. 10.1002/mds.870130310.

Hausdorff JM, Zemany L, Peng C, Goldberger AL: Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol. 1999, 86: 1040-1047.

Hausdorff JM, Yogev G, Springer S, Simon ES, Giladi N: Walking is more like catching than tapping: gait in the elderly as a complex cognitive task. Exp Brain Res. 2005

Sheridan PL, Solomont J, Kowall N, Hausdorff JM: Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer's disease. J Am Geriatr Soc. 2003, 51: 1633-1637. 10.1046/j.1532-5415.2003.51516.x.

Hausdorff JM: Stride variability beyond length and frequency. Gait Posture. 2004, 20: 304-10.1016/j.gaitpost.2003.08.002.

Hittmair-Delazer M, Semenza C, Denses G: Concepts and facts in calculation. Brain. 1994, 117: 715-728. 10.1093/brain/117.4.715.

Smith EE, Geva , Jonides J, Miller A, Reuter-Lorenz P, Koeppe RA: The neural basis of task-switching in working memory: effects of performance and aging. Proc Natl Acad Sci. 2001, 98: 2095-2100. 10.1073/pnas.98.4.2095.

Li KZ, Lindenberger U, Freund AM, Baltes PB: Walking while memorizing: age-related differences in compensatory behavior. Psychol Sci. 2001, 12: 230-237. 10.1111/1467-9280.00341.

Owings TM, Grabiner MD: Measuring step kinematic variability on an instrumented treadmill: how many steps are enough?. J Biomech. 2003, 36: 1215-1218. 10.1016/S0021-9290(03)00108-8.