Fluorescence là gì? Các công bố khoa học về Fluorescence

Fluorescence is a luminescence process where substances emit light upon absorbing electromagnetic radiation, often utilized in scientific and industrial applications. The mechanism involves photon absorption, exciting electrons to higher energy states, which upon returning to their ground state, emit light. Key applications span biology, medicine, industry, and environmental monitoring, employing techniques like fluorescence microscopy and spectroscopy. Fluorescence naturally occurs in organisms like jellyfish. Materials exhibiting fluorescence include organic dyes and proteins. Research is advancing with nanotechnology and quantum dots enhancing marker stability and efficiency, heralding innovations in fields like personalized medicine.

Fluorescence: An In-depth Exploration

Fluorescence is a form of luminescence, which is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a process that occurs when a material, typically a liquid or gas, emits light in response to being exposed to some source of radiation, usually ultraviolet light. This property is utilized in numerous scientific and industrial applications, ranging from biological research to material sciences.

The Mechanism of Fluorescence

Fluorescence occurs when photons are absorbed by a substance, exciting electrons to a higher energy state. Quickly after, these electrons return to their ground state, releasing energy in the form of light. The emitted light usually has a longer wavelength and less energy than the absorbed light. This process distinguishes fluorescence from phosphorescence, where the emitted light persists after the excitation source is removed.

Applications of Fluorescence

Fluorescence has broad applications across various fields. In biological sciences, fluorescent markers are crucial for imaging and tracking cellular and molecular activities. Techniques such as fluorescence microscopy and flow cytometry leverage this property to study complex biological systems.

In the field of medicine, fluorescence is used in diagnostic imaging and to guide surgical procedures. Fluorescent dyes can be employed to highlight specific tissues and pathologies, enhancing the accuracy of diagnostic techniques.

In the industrial and environmental sectors, fluorescence spectroscopy helps in the analysis of chemical compositions, detecting pollutants, and ensuring quality control in manufacturing processes.

Fluorescence in Nature

Fluorescence is not only a laboratory phenomenon but also occurs naturally in various organisms. Many marine creatures, such as jellyfish and corals, exhibit fluorescence as a result of fluorescent proteins. These proteins have been isolated and utilized in scientific research, most notably the Green Fluorescent Protein (GFP) which revolutionized molecular and cellular biology.

Fluorescent Materials

Materials that exhibit fluorescence are categorized based on their composition and fluorescence efficiency. Organic dyes, inorganic phosphors, and fluorescent proteins are typical examples of fluorescent materials. Each type has unique properties suited to different applications, such as dyes for vivid imaging and inorganic phosphors for durability and brightness in industrial applications.

Future Trends in Fluorescence Research

Advancements in fluorescence research continue to emerge, particularly in the development of brighter and more stable fluorescent markers. Nanotechnology is playing a significant role, with quantum dots providing new opportunities for increasing fluorescence efficiency and specificity. Enhanced computational methods and high-throughput screening are driving the evolution of fluorescence applications, particularly in personalized medicine and advanced material sciences.

Conclusion

Fluorescence remains a pivotal area of study and application, bridging numerous scientific disciplines. Its diverse applications and ongoing research underscore its importance, creating promising future directions for innovation and discovery. Understanding the fundamental principles and ongoing advancements in fluorescence can unlock new possibilities across science and technology.

Danh sách công bố khoa học về chủ đề "fluorescence":

A new generation of Ca2+ indicators with greatly improved fluorescence properties.
Journal of Biological Chemistry - Tập 260 Số 6 - Trang 3440-3450 - 1985
Two-Photon Laser Scanning Fluorescence Microscopy
American Association for the Advancement of Science (AAAS) - Tập 248 Số 4951 - Trang 73-76 - 1990
Molecular excitation by the simultaneous absorption of two photons provides intrinsic three-dimensional resolution in laser scanning fluorescence microscopy. The excitation of fluorophores having single-photon absorption in the ultraviolet with a stream of strongly focused subpicosecond pulses of red laser light has made possible fluorescence images of living cells and other microscopic objects. The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photobleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation. This technique also provides unprecedented capabilities for three-dimensional, spatially resolved photochemistry, particularly photolytic release of caged effector molecules.
Chlorophyll fluorescence—a practical guide
Journal of Experimental Botany - Tập 51 Số 345 - Trang 659-668 - 2000
Highly efficient organic light-emitting diodes from delayed fluorescence
Nature - Tập 492 Số 7428 - Trang 234-238 - 2012
Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter
Environmental Science & Technology - Tập 37 Số 24 - Trang 5701-5710 - 2003
Use of nuclepore filters for counting bacteria by fluorescence microscopy
Applied and Environmental Microbiology - Tập 33 Số 5 - Trang 1225-1228 - 1977
Polycarbonate Nuclepore filters are better than cellulose filters for the direct counting of bacteria because they have uniform pore size and a flat surface that retains all of the bacteria on top of the filter. Although cellulose filters also retain all of the bacteria, many are trapped inside the filter where they cannot be counted. Before use, the Nuclepore filters must be dyed with irgalan black to eliminate autofluorescence. Direct counts of bacteria in lake and ocean waters are twice as high with Nuclepore filters as with cellulose filters.
Huỳnh Quang Diệp: Công Cụ Khám Phá Quang Hợp Trực Tiếp
Annual Review of Plant Biology - Tập 59 Số 1 - Trang 89-113 - 2008
Việc sử dụng huỳnh quang diệp lục để giám sát hiệu suất quang hợp trong tảo và thực vật hiện đã trở nên phổ biến. Bài đánh giá này xem xét cách các thông số huỳnh quang có thể được sử dụng để đánh giá những thay đổi trong hóa học quang học của hệ quang hợp II (PSII), dòng điện tử tuyến tính và sự đồng hóa CO2 trong vivo, đồng thời đưa ra cơ sở lý thuyết cho việc sử dụng các thông số huỳnh quang cụ thể. Mặc dù các thông số huỳnh quang có thể được đo dễ dàng, nhưng có thể gặp nhiều vấn đề tiềm ẩn khi ứng dụng chúng để dự đoán sự thay đổi trong hiệu suất quang hợp. Đặc biệt, việc xem xét các vấn đề liên quan đến ước tính chính xác hiệu suất hoạt động của PSII được đo bằng huỳnh quang và mối quan hệ của nó với tốc độ dòng điện tử tuyến tính và sự đồng hóa CO2 được đề cập. Các vai trò của sự dập tắt quang hóa và phi quang hóa trong xác định sự thay đổi hiệu suất hoạt động của PSII cũng được khám phá. Cuối cùng, ứng dụng của chụp ảnh huỳnh quang vào nghiên cứu độ không đồng đều của quang hợp và sàng lọc nhanh số lượng lớn thực vật gây xáo trộn quang hợp và trao đổi chất liên quan cũng được xem xét.
#Huỳnh quang diệp lục #hệ quang hợp II #hóa học quang học #dòng điện tử tuyến tính #đồng hóa CO2 #hiệu suất hoạt động PSII #dập tắt quang hóa #dập tắt phi quang hóa #không đồng đều quang hợp #chụp ảnh huỳnh quang.
Kinetics of Fluorescence Quenching by Electron and H‐Atom Transfer
Israel Journal of Chemistry - Tập 8 Số 2 - Trang 259-271 - 1970
AbstractFluorescence quenching rate constants, kq, ranging from 106 to 2 × 1010 M−1 sec−1, of more than 60 typical electron donor‐acceptor systems have been measured in de‐oxygenated acetonitrile and are shown to be correlated with the free enthalpy change, ΔG23, involved in the actual electron transfer processmagnified imagein the encounter complex and varying between + 5 and −60 kcal/mole. The correlation which is based on the mechanism of adiabatic outer‐sphere electron transfer requires ΔG23, the activation free enthalpy of this process to be a monotonous function of ΔG23 and allows the calculation of rate constants of electron transfer quenching from spectroscopic and electrochemical data.A detailed study of some systems where the calculated quenching constants differ from the experimental ones by several orders of magnitude revealed that the quenching mechanism operative in these cases was hydrogen‐atom rather than electron transfer.The conditions under which these different mechanisms apply and their consequences are discussed.
Tổng số: 30,621   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10