Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes

American Association for the Advancement of Science (AAAS) - Tập 297 Số 5581 - Trang 593-596 - 2002
Michael O’Connell1, Sergei M. Bachilo1, Chad Huffman1, Valerie C. Moore1, Michael S. Strano1, Erik H. Hároz2, Kristy L. Rialon1, Peter J. Boul1, William H. Noon3, Carter Kittrell1, Jianpeng Ma3,4, Robert H. Hauge1, R. Bruce Weisman1, R. E. Smalley1,2
1Department of Chemistry, Rice Quantum Institute, and Center for Nanoscale Science and Technology,
2Department of Physics
3Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
4Graduate Program of Structural and Computational Biology and Molecular Biophysics, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030, USA.

Tóm tắt

Fluorescence has been observed directly across the band gap of semiconducting carbon nanotubes. We obtained individual nanotubes, each encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw single-walled carbon nanotubes in sodium dodecyl sulfate and then centrifuging to remove tube bundles, ropes, and residual catalyst. Aggregation of nanotubes into bundles otherwise quenches the fluorescence through interactions with metallic tubes and substantially broadens the absorption spectra. At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap–selective protonation of the side walls of the tube. This protonation is readily reversed by treatment with base or ultraviolet light.

Từ khóa


Tài liệu tham khảo

M. S. Dresselhaus G. Dresselhaus P. C. Eklund Science of Fullerenes and Carbon Nanotubes (Academic Press San Diego 1996).

M. S. Dresselhaus G. Dresselhaus P. Avouris Eds. Carbon Nanotubes: Synthesis Structure Properties and Applications vol. 80 (Springer Berlin 2001).

A. Thess et al. Science 273 483 (1996).

Girifalco L. A., Hodak M., Lee R. S., Phys. Rev. B 62, 13104 (2000).

J. Liu et al. Science 280 1253 (1998).

M. J. O'Connell et al. Chem. Phys. Lett. 342 265 (2001).

S. Bandow et al. J. Phys. Chem. B 101 8839 (1997).

J. Chen et al. Science 282 95 (1998).

Duesberg G. S., Muster J., Krstic V., Burghard M., Roth S., Appl. Phys. A 67, 117 (1998).

A. B. Dalton et al. J. Phys. Chem. B 104 10012 (2000).

A. B. Dalton et al. Synth. Metals 121 1217 (2001).

Bandyopadhyaya R., Nativ-Roth E., Regev O., Yerushalmi-Rozen R., Nano Lett. 2, 25 (2002).

Bronikowski M. J., Willis P. A., Colbert D. T., Smith K. A., Smalley R. E., J. Vacuum Sci. Technol. A 19, 1800 (2001).

R. Saito G. Dresselhaus M. S. Dresselhaus Physical Properties of Carbon Nanotubes (Imperial College Press London 1998).

W. Zhou et al. Chem. Phys. Lett. 350 6 (2001).

B. R. Brooks et al. J. Comput. Chem. 4 187 (1983).

Feller S. E., Zhang Y., Pastor R. W., J. Chem. Phys. 103, 4613 (1995).

Jorgensen W. L., J. Am. Chem. Soc. 103, 335 (1981).

S. Bandyopadhyay M. L. Klein G. Martyna J.

Tarek M., Mol. Phys. 95, 377 (1998).

10.1103/PhysRevB.61.2981

Reich S., Thomsen C., Ordejon P., Phys. Rev. B 65, 155411 (2002).

Riggs J. E., Guo Z. X., Carroll D. L., Sun Y. P., J. Am. Chem. Soc. 122, 5879 (2000).

Sun Y., Wilson S. R., Schuster D. I., J. Am. Chem. Soc. 123, 5348 (2001).

E. C. Dickey et al. Appl. Phys. Lett. 79 4022 (2001).

M. E. Brennan et al. Synth. Metals 119 641 (2001).

Y. P. Sun et al. Chem. Phys. Lett. 351 349 (2002).

Such a matched pattern implies a set of chromophores each lacking vibrational structure in absorption and emission. Vibrational overtone emission would be undetectably weak under our conditions and organic impurities would not emit in the near infrared.

10.1038/34145

10.1038/34139

R. J. Chen et al. Appl. Phys. Lett. 79 2258 (2001).

Ando T., J. Phys. Soc. Jpn. 66, 1066 (1997).

Karaulis P. J., J. Appl. Crystallogr. 24, 946 (1991).

10.1016/S0263-7855(98)80030-1

Supported by the NSF Focused Research Group on Fullerene Nanotube Chemistry (DMR-0073046) the NSF Center for Biological and Environmental Nanotechnology (EEC-0118007) and the Robert A. Welch Foundation (C-0689). Support from NASA (NCC 9-77) for development of the HiPco method is also gratefully acknowledged. R.B.W. and S.M.B. are grateful to the NSF (grant CHE-9900417) and the Robert A. Welch Foundation (grant C-0807) for research support. We thank R. Saito for communicating unpublished computational results.