thumbnail

Springer Science and Business Media LLC

  1750-1326

 

 

Cơ quản chủ quản:  BioMed Central Ltd. , BMC

Lĩnh vực:
Cellular and Molecular NeuroscienceMolecular BiologyNeurology (clinical)

Phân tích ảnh hưởng

Thông tin về tạp chí

 

Các bài báo tiêu biểu

TRPA1 channels promote astrocytic Ca2+ hyperactivity and synaptic dysfunction mediated by oligomeric forms of amyloid-β peptide
Tập 12 - Trang 1-19 - 2017
Anthony Bosson, Adrien Paumier, Sylvie Boisseau, Muriel Jacquier-Sarlin, Alain Buisson, Mireille Albrieux
Excessive synaptic loss is thought to be one of the earliest events in Alzheimer’s disease (AD). However, the key mechanisms that maintain plasticity of synapses during adulthood or initiate synapse dysfunction in AD remain unknown. Recent studies suggest that astrocytes contribute to functional changes observed during synaptic plasticity and play a major role in synaptic dysfunction but astrocytes behavior and involvement in early phases of AD remained largely undefined. We measure astrocytic calcium activity in mouse CA1 hippocampus stratum radiatum in both the global astrocytic population and at a single cell level, focusing in the highly compartmentalized astrocytic arbor. Concurrently, we measure excitatory post-synaptic currents in nearby pyramidal neurons. We find that application of soluble Aβ oligomers (Aβo) induced fast and widespread calcium hyperactivity in the astrocytic population and in the microdomains of the astrocyte arbor. We show that astrocyte hyperactivity is independent of neuronal activity and is repaired by transient receptor potential A1 (TRPA1) channels blockade. In return, this TRPA1 channels-dependent hyperactivity influences neighboring CA1 neurons triggering an increase in glutamatergic spontaneous activity. Interestingly, in an AD mouse model (APP/PS1–21 mouse), astrocyte calcium hyperactivity equally takes place at the beginning of Aβ production, depends on TRPA1 channels and is linked to CA1 neurons hyperactivity. Our experiments demonstrate that astrocytes contribute to early Aβo toxicity exhibiting a global and local Ca2+ hyperactivity that involves TRPA1 channels and is related to neuronal hyperactivity. Together, our data suggest that astrocyte is a frontline target of Aβo and highlight a novel mechanism for the understanding of early synaptic dysregulation induced by soluble Aβo species.
The neuropathological diagnosis of Alzheimer’s disease
Tập 14 - Trang 1-18 - 2019
Michael A. DeTure, Dennis W. Dickson
Alzheimer’s disease is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline, although less common clinical presentations are increasingly recognized. The cardinal pathological features of the disease have been known for more than one hundred years, and today the presence of these amyloid plaques and neurofibrillary tangles are still required for a pathological diagnosis. Alzheimer’s disease is the most common cause of dementia globally. There remain no effective treatment options for the great majority of patients, and the primary causes of the disease are unknown except in a small number of familial cases driven by genetic mutations. Confounding efforts to develop effective diagnostic tools and disease-modifying therapies is the realization that Alzheimer’s disease is a mixed proteinopathy (amyloid and tau) frequently associated with other age-related processes such as cerebrovascular disease and Lewy body disease. Defining the relationships between and interdependence of various co-pathologies remains an active area of investigation. This review outlines etiologically-linked pathologic features of Alzheimer’s disease, as well as those that are inevitable findings of uncertain significance, such as granulovacuolar degeneration and Hirano bodies. Other disease processes that are frequent, but not inevitable, are also discussed, including pathologic processes that can clinically mimic Alzheimer’s disease. These include cerebrovascular disease, Lewy body disease, TDP-43 proteinopathies and argyrophilic grain disease. The purpose of this review is to provide an overview of Alzheimer’s disease pathology, its defining pathologic substrates and the related pathologies that can affect diagnosis and treatment.
The RAB39B p.G192R mutation causes X-linked dominant Parkinson’s disease
Tập 10 - Trang 1-8 - 2015
Ignacio F. Mata, Yongwoo Jang, Chun-Hyung Kim, David S. Hanna, Michael O. Dorschner, Ali Samii, Pinky Agarwal, John W. Roberts, Olga Klepitskaya, David R. Shprecher, Kathryn A. Chung, Stewart A. Factor, Alberto J. Espay, Fredy J. Revilla, Donald S. Higgins, Irene Litvan, James B. Leverenz, Dora Yearout, Miguel Inca-Martinez, Erica Martinez, Tiffany R. Thompson, Brenna A. Cholerton, Shu-Ching Hu, Karen L. Edwards, Kwang-Soo Kim, Cyrus P. Zabetian
To identify the causal gene in a multi-incident U.S. kindred with Parkinson’s disease (PD). We characterized a family with a classical PD phenotype in which 7 individuals (5 males and 2 females) were affected with a mean age at onset of 46.1 years (range, 29-57 years). We performed whole exome sequencing on 4 affected and 1 unaffected family members. Sanger-sequencing was then used to verify and genotype all candidate variants in the remainder of the pedigree. Cultured cells transfected with wild-type or mutant constructs were used to characterize proteins of interest. We identified a missense mutation (c.574G > A; p.G192R) in the RAB39B gene that closely segregated with disease and exhibited X-linked dominant inheritance with reduced penetrance in females. The mutation occurred in a highly conserved amino acid residue and was not observed among 87,725 X chromosomes in the Exome Aggregation Consortium dataset. Sequencing of the RAB39B coding region in 587 familial PD cases yielded two additional mutations (c.428C > G [p.A143G] and c.624_626delGAG [p.R209del]) that were predicted to be deleterious in silico but occurred in families that were not sufficiently informative to assess segregation with disease. Experiments in PC12 and SK-N-BE(2)C cells demonstrated that p.G192R resulted in mislocalization of the mutant protein, possibly by altering the structure of the hypervariable C-terminal domain which mediates intracellular targeting. Our findings implicate RAB39B, an essential regulator of vesicular-trafficking, in clinically typical PD. Further characterization of normal and aberrant RAB39B function might elucidate important mechanisms underlying neurodegeneration in PD and related disorders.
Age-dependent changes in TDP-43 levels in a mouse model of Alzheimer disease are linked to Aβ oligomers accumulation
Tập 5 - Trang 1-11 - 2010
Antonella Caccamo, Andrea Magrí, Salvatore Oddo
Transactive response DNA-binding protein 43 (TDP-43) is the pathological protein found in frontotemporal lobar degeneration with ubiquitin positive inclusions and in amyotrophic lateral sclerosis. In diseased tissue, TDP-43 translocates from its physiological nuclear location into the cytoplasm, where it accumulates. Additionally, C-terminal fragments of TDP-43 accumulate in affected brain regions and are sufficient to cause TDP-43 mislocalization and cytoplasmic accumulation in vitro. TDP-43 also accumulates in 30% of Alzheimer disease (AD) cases, a finding that has been highly reproducible. The role of TDP-43 in AD and its relation with Aβ and tau pathology, the two neuropathological hallmarks of AD, remains to be elucidated. Here we show that levels of TDP-43 and its ~35 kDa C-terminal fragment are significantly increased in the 3×Tg-AD mice, an animal model of AD that develops an age-dependent cognitive decline linked to the accumulation of Aβ and tau. We also report that the levels of TDP-43 and its C-terminal fragment correlate with the levels of soluble Aβ oligomers, which play a key role in AD pathogenesis. Notably, genetically reducing Aβ42 production restores the levels of TDP-43 and its ~35 kDa C-terminal fragment to control levels. These data suggest a possible relation between Aβ oligomers and TDP-43.
Effects of CD2-associated protein deficiency on amyloid-β in neuroblastoma cells and in an APP transgenic mouse model
Tập 10 Số 1 - 2015
Fan Liao, Hong Jiang, Subhashini Srivatsan, Qingli Xiao, Katheryn B. Lefton, Kaoru Yamada, Thomas E. Mahan, Lee J, Andréy S. Shaw, David M. Holtzman
Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Aβ accumulation and plaque-related pathology in a mouse model of amyloidosis
Tập 17 Số 1
Thomas E. Mahan, Chao Wang, Xin Bao, Ankit Choudhury, Jason D. Ulrich, David M. Holtzman
Abstract Background One of the key pathological hallmarks of Alzheimer disease (AD) is the accumulation of the amyloid-β (Aβ) peptide into amyloid plaques. The apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset AD and has been shown to influence the accumulation of Aβ in the brain in an isoform-dependent manner. ApoE can be produced by different cell types in the brain, with astrocytes being the largest producer of apoE, although reactive microglia also express high levels of apoE. While studies have shown that altering apoE levels in the brain can influence the development of Aβ plaque pathology, it is not fully known how apoE produced by specific cell types, such as astrocytes, contributes to amyloid pathology. Methods We utilized APOE knock-in mice capable of having APOE selectively removed from astrocytes in a tamoxifen-inducible manner and crossed them with the APP/PS1-21 mouse model of amyloidosis. We analyzed the changes to Aβ plaque levels and assessed the impact on cellular responses to Aβ plaques when astrocytic APOE is removed. Results Tamoxifen administration was capable of strongly reducing apoE levels in the brain by markedly reducing astrocyte apoE, while microglial apoE expression remained. Reduction of astrocytic apoE3 and apoE4 led to a large decrease in Aβ plaque deposition and less compact plaques. While overall Iba1+ microglia were unchanged in the cortex after reducing astrocyte apoE, the expression of the disease-associated microglial markers Clec7a and apoE were lower around amyloid plaques, indicating decreased microglial activation. Additionally, astrocyte GFAP levels are unchanged around amyloid plaques, but overall GFAP levels are reduced in the cortex of female apoE4 mice after a reduction in astrocytic apoE. Finally, while the amount of neuritic dystrophy around remaining individual plaques was increased with the removal of astrocytic apoE, the overall amount of cortical amyloid-associated neuritic dystrophy was significantly decreased. Conclusion This study reveals an important role of astrocytic apoE3 and apoE4 on the deposition and accumulation of Aβ plaques as well as on certain Aβ-associated downstream effects.
2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling
Tập 13 - Trang 1-15 - 2018
Eduarda G Z Centeno, Helena Cimarosti, Angela Bithell
Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field.
Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment
- 2021
Shulan Qiu, Juan Pablo Palavicini, Jianing Wang, Nancy S. Gonzalez, Sijia He, Elizabeth Dustin, Cheng Zou, Lin Ding, Anindita Bhattacharjee, Candice E. Van Skike, Veronica Galvan, Jeffrey L. Dupree, Xianlin Han
Human genetic association studies point to immune response and lipid metabolism, in addition to amyloid-beta (Aβ) and tau, as major pathways in Alzheimer’s disease (AD) etiology. Accumulating evidence suggests that chronic neuroinflammation, mainly mediated by microglia and astrocytes, plays a causative role in neurodegeneration in AD. Our group and others have reported early and dramatic losses of brain sulfatide in AD cases and animal models that are mediated by ApoE in an isoform-dependent manner and accelerated by Aβ accumulation. To date, it remains unclear if changes in specific brain lipids are sufficient to drive AD-related pathology. To study the consequences of CNS sulfatide deficiency and gain insights into the underlying mechanisms, we developed a novel mouse model of adult-onset myelin sulfatide deficiency, i.e., tamoxifen-inducible myelinating glia-specific cerebroside sulfotransferase (CST) conditional knockout mice (CSTfl/fl/Plp1-CreERT), took advantage of constitutive CST knockout mice (CST−/−), and generated CST/ApoE double knockout mice (CST−/−/ApoE−/−), and assessed these mice using a broad range of methodologies including lipidomics, RNA profiling, behavioral testing, PLX3397-mediated microglia depletion, mass spectrometry (MS) imaging, immunofluorescence, electron microscopy, and Western blot. We found that mild central nervous system (CNS) sulfatide losses within myelinating cells are sufficient to activate disease-associated microglia and astrocytes, and to increase the expression of AD risk genes (e.g., Apoe, Trem2, Cd33, and Mmp12), as well as previously established causal regulators of the immune/microglia network in late-onset AD (e.g., Tyrobp, Dock, and Fcerg1), leading to chronic AD-like neuroinflammation and mild cognitive impairment. Notably, neuroinflammation and mild cognitive impairment showed gender differences, being more pronounced in females than males. Subsequent mechanistic studies demonstrated that although CNS sulfatide losses led to ApoE upregulation, genetically-induced myelin sulfatide deficiency led to neuroinflammation independently of ApoE. These results, together with our previous studies (sulfatide deficiency in the context of AD is mediated by ApoE and accelerated by Aβ accumulation) placed both Aβ and ApoE upstream of sulfatide deficiency-induced neuroinflammation, and suggested a positive feedback loop where sulfatide losses may be amplified by increased ApoE expression. We also demonstrated that CNS sulfatide deficiency-induced astrogliosis and ApoE upregulation are not secondary to microgliosis, and that astrogliosis and microgliosis seem to be driven by activation of STAT3 and PU.1/Spi1 transcription factors, respectively. Our results strongly suggest that sulfatide deficiency is an important contributor and driver of neuroinflammation and mild cognitive impairment in AD pathology.