Springer Science and Business Media LLC

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
hiPSC-based models to decipher the contribution of human astrocytes to Alzheimer’s disease and potential therapeutics
Springer Science and Business Media LLC - Tập 18 Số 1
Julia Tcw, Amaia M. Arranz
Cellular stress signaling and the unfolded protein response in retinal degeneration: mechanisms and therapeutic implications
Springer Science and Business Media LLC - Tập 17 - Trang 1-19 - 2022
Todd McLaughlin, Andy Medina, Jacob Perkins, Maria Yera, Joshua J. Wang, Sarah X. Zhang
The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, disturbance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of the role of the UPR in the maintenance of retinal health and function. We performed an extensive literature search on PubMed and Google Scholar using the following keywords: unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, retinitis pigmentosa, glaucoma, diabetic retinopathy. We summarize recent advances in understanding cellular stress response, in particular the UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for targeting the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.
The novel RAGE interactor PRAK is associated with autophagy signaling in Alzheimer’s disease pathogenesis
Springer Science and Business Media LLC - Tập 11 - Trang 1-11 - 2016
Yoonhee Kim, Chaeyoung Kim, Sung Min Son, Hyundong Song, Hyun Seok Hong, Sun-ho Han, Inhee Mook-Jung
The receptor for advanced glycation end products (RAGE) has been found to interact with amyloid β (Aβ). Although RAGE does not have any kinase motifs in its cytosolic domain, the interaction between RAGE and Aβ triggers multiple cellular signaling involved in Alzheimer’s disease (AD). However, the mechanism of signal transduction by RAGE remains still unknown. Therefore, identifying binding proteins of RAGE may provide novel therapeutic targets for AD. In this study, we identified p38-regulated/activated protein kinase (PRAK) as a novel RAGE interacting molecule. To investigate the effect of Aβ on PRAK mediated RAGE signaling pathway, we treated SH-SY5Y cells with monomeric form of Aβ. We demonstrated that Aβ significantly increased the phosphorylation of PRAK as well as the interaction between PRAK and RAGE. We showed that knockdown of PRAK rescued mTORC1 inactivation induced by Aβ treatment and decreased the formation of Aβ-induced autophagosome. We provide evidence that PRAK plays a critical role in AD pathology as a key interactor of RAGE. Thus, our data suggest that PRAK might be a potential therapeutic target of AD involved in RAGE-mediated cell signaling induced by Aβ.
The route of SARS-CoV-2 to brain infection: have we been barking up the wrong tree?
Springer Science and Business Media LLC - Tập 17 - Trang 1-4 - 2022
Rafal Butowt, Christopher S. von Bartheld
This letter draws attention to recent work supporting the notion that the SARS-CoV-2 virus may use the nervus terminalis rather than the olfactory nerve as a shortcut route from the nasal cavity to infect the brain.
Localization of BDNF mRNA with the Huntington's disease protein in rat brain
Springer Science and Business Media LLC - Tập 5 - Trang 1-15 - 2010
Bin Ma, Brady P Culver, Gabriele Baj, Enrico Tongiorgi, Moses V Chao, Naoko Tanese
Studies have implicated reduced levels of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Huntington's disease. Mutant huntingtin (Htt) protein was previously reported to decrease BDNF gene transcription and axonal transport of BDNF. We recently showed that wild-type Htt is associated with the Argonaute 2 microRNA-processing enzyme involved in gene silencing. In dendrites, Htt co-localizes with components of neuronal granules and mRNAs, indicating that it might play a role in post-transcriptional processing/transport of dendritic mRNAs. We conducted imaging experiments in cultured cortical neurons to demonstrate the co-localization of endogenous Htt and BDNF mRNA in fixed cells, and co-trafficking of BDNF 3'UTR mRNA with endogenous and fluorescently tagged Htt in live neurons. We used an enhanced technique that combines FISH and immunofluorescent staining to co-localize BDNF mRNA with Htt, Ago2, CPEB and dynein in thick vibratome sections of the rat cortex. In cultured neurons and sections of the rat cortex, we found BDNF mRNA associated with Htt and components of neuronal RNA granules, which are centers for regulating RNA transport and local translation. Htt may play a role in post-transcriptional transport/targeting of mRNA for BDNF, thus contributing to neurotrophic support and neuron survival.
Functional microRNA targetome undergoes degeneration-induced shift in the retina
Springer Science and Business Media LLC - Tập 16 - Trang 1-21 - 2021
Joshua A. Chu-Tan, Adrian V. Cioanca, Zhi-Ping Feng, Yvette Wooff, Ulrike Schumann, Riemke Aggio-Bruce, Hardip Patel, Matt Rutar, Katherine Hannan, Konstantin Panov, Jan Provis, Riccardo Natoli
MicroRNA (miRNA) play a significant role in the pathogenesis of complex neurodegenerative diseases including age-related macular degeneration (AMD), acting as post-transcriptional gene suppressors through their association with argonaute 2 (AGO2) - a key member of the RNA Induced Silencing Complex (RISC). Identifying the retinal miRNA/mRNA interactions in health and disease will provide important insight into the key pathways miRNA regulate in disease pathogenesis and may lead to potential therapeutic targets to mediate retinal degeneration. To identify the active miRnome targetome interactions in the healthy and degenerating retina, AGO2 HITS-CLIP was performed using a rodent model of photoreceptor degeneration. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data was performed to identify the cellular location of AGO2 and key members of the microRNA targetome in the retina. AGO2 findings were verified by in situ hybridization (RNA) and immunohistochemistry (protein). Analysis revealed a similar miRnome between healthy and damaged retinas, however, a shift in the active targetome was observed with an enrichment of miRNA involvement in inflammatory pathways. This shift was further demonstrated by a change in the seed binding regions of miR-124-3p, the most abundant retinal AGO2-bound miRNA, and has known roles in regulating retinal inflammation. Additionally, photoreceptor cluster miR-183/96/182 were all among the most highly abundant miRNA bound to AGO2. Following damage, AGO2 expression was localized to the inner retinal layers and more in the OLM than in healthy retinas, indicating a locational miRNA response to retinal damage. This study provides important insight into the alteration of miRNA regulatory activity that occurs as a response to retinal degeneration and explores the miRNA-mRNA targetome as a consequence of retinal degenerations. Further characterisation of these miRNA/mRNA interactions in the context of the degenerating retina may provide an important insight into the active role these miRNA may play in diseases such as AMD.
Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation
Springer Science and Business Media LLC - Tập 8 - Trang 1-12 - 2013
William A Eimer, Robert Vassar
Although the mechanism of neuron loss in Alzheimer’s disease (AD) is enigmatic, it is associated with cerebral accumulation of Aβ42. The 5XFAD mouse model of amyloid deposition expresses five familial AD (FAD) mutations that are additive in driving Aβ42 overproduction. 5XFAD mice exhibit intraneuronal Aβ42 accumulation at 1.5 months, amyloid deposition at 2 months, and memory deficits by 4 months of age. Here, we demonstrate by unbiased stereology that statistically significant neuron loss occurs by 9 months of age in 5XFAD mice. We validated two Aβ42-selective antibodies by immunostaining 5XFAD; BACE1−/− bigenic brain sections and then used these antibodies to show that intraneuronal Aβ42 and amyloid deposition develop in the same regions where neuron loss is observed in 5XFAD brain. In 5XFAD neuronal soma, intraneuronal Aβ42 accumulates in puncta that co-label for Transferrin receptor and LAMP-1, indicating endosomal and lysosomal localization, respectively. In addition, in young 5XFAD brains, we observed activated Caspase-3 in the soma and proximal dendrites of intraneuronal Aβ42-labeled neurons. In older 5XFAD brains, we found activated Caspase-3-positive punctate accumulations that co-localize with the neuronal marker class III β-tubulin, suggesting neuron loss by apoptosis. Together, our results indicate a temporal sequence of intraneuronal Aβ42 accumulation, Caspase-3 activation, and neuron loss that implies a potential apoptotic mechanism of neuron death in the 5XFAD mouse.
BACE1, the Alzheimer’s beta-secretase enzyme, in health and disease
Springer Science and Business Media LLC - Tập 8 - Trang 1-1 - 2013
Robert Vassar
The biochemical aftermath of anti-amyloid immunotherapy
Springer Science and Business Media LLC - Tập 5 - Trang 1-15 - 2010
Chera L Maarouf, Ian D Daugs, Tyler A Kokjohn, Walter M Kalback, R Lyle Patton, Dean C Luehrs, Eliezer Masliah, James AR Nicoll, Marwan N Sabbagh, Thomas G Beach, Eduardo M Castaño, Alex E Roher
Active and passive immunotherapy in both amyloid-beta precursor protein (APP) transgenic mice and Alzheimer's Disease (AD) patients have resulted in remarkable reductions in amyloid plaque accumulation, although the degree of amyloid regression has been highly variable. Nine individuals with a clinical diagnosis of AD dementia were actively immunized with the Aβ peptide 1-42 (AN-1792) and subjected to detailed postmortem biochemical analyses. These patients were compared to 6 non-immunized AD cases and 5 non-demented control (NDC) cases. All patients were assessed for the presence of AD pathology including amyloid plaques, neurofibrillary tangles and vascular amyloidosis. This effort revealed that two immunotherapy recipients had dementia as a consequence of diseases other than AD. Direct neuropathological examination consistently demonstrated small to extensive areas in which amyloid plaques apparently were disrupted. Characterization of Aβ species remnants by ELISA suggested that total Aβ levels may have been reduced, although because the amounts of Aβ peptides among treated individuals were extremely variable, those data must be regarded as tentative. Chromatographic analysis and Western blots revealed abundant dimeric Aβ peptides. SELDI-TOF mass spectrometry demonstrated a substantive number of Aβ-related peptides, some of them with elongated C-terminal sequences. Pro-inflammatory TNF-α levels were significantly increased in the gray matter of immunized AD cases compared to the NDC and non-immunized AD groups. Immunotherapy responses were characterized by extreme variability. Considering the broad range of biological variation that characterizes aging and complicates the recognition of reliable AD biomarkers, such disparities will make the interpretation of outcomes derived from epidemiologic and therapeutic investigations challenging. Although in some cases the apparent removal of amyloid plaques by AN-1792 was impressive, proportionate alterations in the clinical progression of AD were not evident. The fact that plaque elimination did not alter the trajectory of decline into dementia suggests the likelihood that these deposits alone are not the underlying cause of dementia.
Upregulation of Ca2+-binding proteins contributes to VTA dopamine neuron survival in the early phases of Alzheimer’s disease in Tg2576 mice
Springer Science and Business Media LLC - - 2022
Livia La Barbera, Annalisa Nobili, Emma Cauzzi, Ilaria Paoletti, Mauro Federici, Luana Saba, Cecilia Giacomet, Ramona Marino, Paraskevi Krashia, Marcello Melone, Flavio Keller, Nicola Biagio Mercuri, Maria Teresa Viscomi, Fiorenzo Conti, Marcello D’Amelio
Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer’s Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens – a major component of the ventral striatum precociously affected in AD patients – together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.
Tổng số: 936   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10