Renin angiotensin system and gender differences in dopaminergic degeneration

Springer Science and Business Media LLC - Tập 6 - Trang 1-13 - 2011
Ana I Rodriguez-Perez1, Rita Valenzuela1, Belen Joglar1, Pablo Garrido-Gil1, Maria J Guerra1, Jose L Labandeira-Garcia1
1Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, Spain

Tóm tắt

There are sex differences in dopaminergic degeneration. Men are approximately two times as likely as premenopausal women of the same age to develop Parkinson's disease (PD). It has been shown that the local renin angiotensin system (RAS) plays a prominent role in sex differences in the development of chronic renal and cardiovascular diseases, and there is a local RAS in the substantia nigra and dopaminergic cell loss is enhanced by angiotensin via type 1 (AT1) receptors. In the present study, we observed that intrastriatal injection of 6-hydroxydopamine induced a marked loss of dopaminergic neurons in the substantia nigra of male rats, which was significantly higher than the loss induced in ovariectomized female rats given estrogen implants (i.e. rats with estrogen). However, the loss of dopaminergic neurons was significantly lower in male rats treated with the AT1 antagonist candesartan, and similar to that observed in female rats with estrogen. The involvement of the RAS in gender differences in dopaminergic degeneration was confirmed with AT1a-null mice lesioned with the dopaminergic neurotoxin MPTP. Significantly higher expression of AT1 receptors, angiotensin converting enzyme activity, and NADPH-oxidase complex activity, and much lower levels of AT2 receptors were observed in male rats than in female rats with estrogen. The results suggest that brain RAS plays a major role in the increased risk of developing PD in men, and that manipulation of brain RAS may be an efficient approach for neuroprotective treatment of PD in men, without the feminizing effects of estrogen.

Tài liệu tham khảo

Mayeux R, Marder K, Cote LJ, Denaro J, Hemenegildo N, Mejia H, Tang MX, Lantigua R, Wilder D, Gurland B, et al: The frequency of idiopathic Parkinson's disease by age, ethnic group, and sex in northern Manhattan, 1988-1993. Am J Epidemiol. 1995, 142: 820-827. Baldereschi M, Di Carlo A, Rocca WA, Vanni P, Maggi S, Perissinotto E, Grigoletto F, Amaducci L, Inzitari D: Parkinson's disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology. 2000, 5: 1358-1363. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM: Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003, 157: 1015-1022. 10.1093/aje/kwg068. González-Hernández T, Cruz-Muros I, Afonso-Oramas D, Salas-Hernandez J, Castro-Hernandez J: Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Front Neuroanat. 2010, 4: 140-PMID:21079748 Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK: Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res. 2002, 91: 406-413. 10.1161/01.RES.0000033523.08033.16. Cai H, Griendling KK, Harrison DG: The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends PharmacolSci. 2003, 24: 471-478. 10.1016/S0165-6147(03)00233-5. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, Schiffrin EL: Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res. 2002, 14: 1205-1213. Babior B: NADPH oxidase: An update. Blood. 1999, 93: 1464-1476. Babior BM: NADPH oxidase. Curr Opin Immunol. 2004, 16: 42-47. 10.1016/j.coi.2003.12.001. Fischer M, Baessler A, Schunkert H: Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res. 2002, 53: 672-677. 10.1016/S0008-6363(01)00479-5. McGuire BB, Watson RW, Pérez-Barriocanal F, Fitzpatrick JM, Docherty NG: Gender differences in the renin-angiotensin and nitric oxide systems: relevance in the normal and diseased kidney. Kidney Blood Press Res. 2007, 30: 67-80. 10.1159/000099150. Sandberg K, Ji H: Sex and the renin angiotensin system: implications for gender differences in the progression of kidney disease. Adv Ren Replace Ther. 2003, 10: 15-23. 10.1053/jarr.2003.50006. Liu J, Ji H, Zheng W, Wu X, Zhu JJ, Arnold AP, Sandberg K: Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ. 2010, 1: 6-10.1186/2042-6410-1-6. Baiardi G, Macova M, Armando I, Ando H, Tyurmin D, Saavedra JM: Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regul Pept. 2005, 124: 7-17. 10.1016/j.regpep.2004.06.021. Sullivan JC: Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Comp Physiol. 2008, 294: R1220-1226. 10.1152/ajpregu.00864.2007. Chen J, Yang S, Hu S, Choudhry MA, Bland KI, Chaudry IH: Estrogen prevents intestinal inflammation after trauma-hemorrhage via downregulation of angiotensin II and angiotensin II subtype I receptor. Am J Physiol Gastrointest Liver Physiol. 2008, 295: G1131-1137. 10.1152/ajpgi.90443.2008. Dean SA, Tan J, O'Brien ER, Leenen FH: 17beta-estradiol downregulates tissue angiotensin-converting enzyme and ANG II type 1 receptor in female rats. Am J Physiol Regul Integr Comp Physiol. 2004, 288: R759-766. 10.1152/ajpregu.00595.2004. Nickenig G, Bäumer AT, Grohè C, Kahlert S, Strehlow K, Rosenkranz S, Stäblein A, Beckers F, Smits JF, Daemen MJ, Vetter H, Böhm M: Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation. 1998, 97: 2197-2201. Ojeda NB, Royals TP, Black JT, Dasinger JH, Johnson JM, Alexander BT: Enhanced sensitivity to acute angiotensin II is testosterone dependent in adult male growth-restricted offspring. Am J Physiol Regul Integr Comp Physiol. 2010, 298: R1421-1427. 10.1152/ajpregu.00096.2010. Henriques T, Zhang X, Yiannikouris FB, Daugherty A, Cassis LA: Androgen increases AT1a receptor expression in abdominal aortas to promote angiotensin II-induced AAAs in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2008, 28: 1251-1256. 10.1161/ATVBAHA.107.160382. McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, Oldfield BJ, Mendelsohn FAO, Chai S: The brain reenin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol. 2003, 35: 901-918. 10.1016/S1357-2725(02)00306-0. Saavedra JM: Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol. 2005, 25: 485-512. 10.1007/s10571-005-4011-5. Rey P, Lopez-Real A, Sanchez-Iglesias S, Muñoz A, Soto-Otero R, Labandeira-Garcia JL: Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging. 2007, 28: 555-567. 10.1016/j.neurobiolaging.2006.02.018. Rodriguez-Pallares J, Rey P, Parga JA, Muñoz A, Guerra MJ, Labandeira-Garcia JL: Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis. 2008, 31: 58-73. 10.1016/j.nbd.2008.03.003. Joglar B, Rodriguez-Pallares J, Rodríguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL: The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem. 2009, 109: 656-669. 10.1111/j.1471-4159.2009.05999.x. Lloyd GW, Patel NR, McGing E, Cooper AF, Brennand-Roper D, Jackson G: Does angina vary with the menstrual cycle in women with premenopausal coronary artery disease?. Heart. 2000, 84: 189-192. 10.1136/heart.84.2.189. Mills PJ, Ziegler MG, Nelesen RA, Kennedy BP: The effects of the menstrual cycle, race, and gender on adrenergic receptors and agonists. Clin Pharmacol Ther. 1996, 60: 99-104. 10.1016/S0009-9236(96)90172-1. Li JM, Shah AM: Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem. 2003, 278: 12094-12100. 10.1074/jbc.M209793200. Rueckschloss U, Quinn MT, Holtz J, Morawietz H: Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2002, 22: 1845-1851. 10.1161/01.ATV.0000035392.38687.65. Gao HM, Liu B, Zhang W, Hong JS: Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. FASEB J. 2003, 17: 1957-1959. Andersen JK: Oxidative stress in neurodegeneration: cause or consequence. Nat Med. 2004, 10: S18-25. 10.1038/nrn1434. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Choi DK, Przedborski S: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002, 22: 1763-1771. Wu D, Teisman P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S: NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson¨s disease. Proc Natl Acad Sci USA. 2003, 100: 6145-6150. 10.1073/pnas.0937239100. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS: NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem. 2004, 279: 1415-1421. Sohn HY, Raff U, Hoffmann A, Gloe T, Heermeier K, Galle J, Pohl U: Differential role of angiotensin II receptor subtypes on endothelial superoxide formation. Br J Pharmacol. 2000, 131: 667-672. 10.1038/sj.bjp.0703566. Lu Q, Zhu YZ, Wong PT: Neuroprotective effects of candesartan against cerebral ischemia in spontaneously hypertensive rats. Neuroreport. 2005, 16: 1963-1967. 10.1097/01.wnr.0000187636.13147.cd. Hamai M, Iwai M, Ide A, Tomochika H, Tomono Y, Mogi M, Horiuchi M: Comparison of inhibitory action. Neuropharmacology. 2006, 51: 822-828. 10.1016/j.neuropharm.2006.05.029. Rodriguez-Pallares J, Parga JA, Muñoz A, Rey P, Guerra MJ, Labandeira-Garcia JL: Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem. 2007, 103: 145-156. Suzuki S, Brown CM, Dela Cruz CD, Yang E, Bridwell DA, Wise PM: Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc Natl Acad Sci USA. 2007, 104: 6013-6018. 10.1073/pnas.0610394104. Turgeon JL, Carr MC, Maki PM, Mendelsohn ME, Wise PM: Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: Insights from basic science and clinical studies. Endocr Rev. 2006, 27: 575-605. 10.1210/er.2005-0020. Morale MC, Serra PA, L'episcopo F, Tirolo C, Caniglia S, Testa N, Gennuso F, Giaquinta G, Rocchitta G, Desole MS, Miele E, Marchetti B: Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience. 2006, 138: 869-878. 10.1016/j.neuroscience.2005.07.060. Tripanichkul W, Sripanichkulchai K, Finkelstein DI: Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Brain Res. 2006, 1084: 28-37. 10.1016/j.brainres.2006.02.029. Xue B, Zhao Y, Johnson AK, Hay M: Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species. Am J Physiol Heart Circ Physiol. 2008, 295: H1025-1032. 10.1152/ajpheart.00021.2008. Ito K, Hirooka Y, Kimura Y, Sagara Y, Sunagawa K: Ovariectomy augments hypertension through rho-kinase activation in the brain stem in female spontaneously hypertensive rats. Hypertension. 2006, 48: 651-657. 10.1161/01.HYP.0000238125.21656.9e. Song J, Kost CK, Martin DS: Androgens potentiate renal vascular responses to angiotensin II via amplification of the Rho kinase signaling pathway. Cardiovasc Res. 2006, 72: 456-463. 10.1016/j.cardiores.2006.09.007. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T: International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000, 52: 415-472. Correa FM, Viswanathan M, Ciuffo GM, Tsutsumi K, Saavedra JM: Kidney angiotensin II receptors and converting enzyme in neonatal and adult Wistar-Kyoto and spontaneously hypertensive rats. Peptides. 1995, 16: 19-24. 10.1016/0196-9781(94)00150-5. Ozono R, Wang ZQ, Moore AF, Inagami T, Siragy HM, Carey RM: Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension. 1997, 30: 1238-1246. Wu L, Iwai M, Nakagami H, Li Z, Chen R, Suzuki J, Akishita M, de Gasparo M, Horiuchi M: Roles of angiotensin II type 2 receptor stimulation associated with selective angiotensin II type 1 receptor blockade with valsartan in the improvement of inflammation-induced vascular injury. Circulation. 2001, 104: 2716-2721. 10.1161/hc4601.099404. Villar-Cheda B, Valenzuela R, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL: Aging-related changes in the nigral angiotensin system enhances proinflammatory and pro-oxidative markers and 6-OHDA-induced dopaminergic degeneration. Neurobiol Aging. 2010, PMID:20888078 Villar-Cheda B, Rodríguez-Pallares J, Muñoz A, Valenzuela R, Guerra MJ, Baltatu OC, Labandeira-Garcia JL: Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease. Eur J Neurosci. 2010, 32: 1695-1706. 10.1111/j.1460-9568.2010.07448.x. Zeng C, Liu Y, Wang Z, He D, Huang L, Yu P, Zheng S, Jones JE, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA: Activation of D3 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Circ Res. 2006, 99: 494-500. 10.1161/01.RES.0000240500.96746.ec. Khan F, Spicarová Z, Zelenin S, Holtbäck U, Scott L, Aperia A: Negative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells. Am J Physiol Renal Physiol. 2008, 295: F1110-1116. 10.1152/ajprenal.90336.2008. Gildea JJ: Dopamine and angiotensin as renal counterregulatory systems controlling sodium balance. Curr Opin Nephrol Hypertens. 2009, 18: 28-32. 10.1097/MNH.0b013e32831a9e0b. Sugaya T, Nishimatsu S, Tanimoto K, Takimoto E, Yamagishi T, Imamura K, Goto S, Imaizumi K, Hisada Y, Otsuka A, et al: Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem. 1995, 270: 18719-18722. 10.1074/jbc.270.32.18719. Paxinos G, Watson C: The rat brain in stereotaxic coordinates. 1985, New York: Academic Press Dziuk PJ, Cook B: Passage of steroids through silicone rubber. Endocrinology. 1966, 78: 208-211. 10.1210/endo-78-1-208. Febo M, Ferris CF, Segarra AC: Estrogen influences cocaine-induced blood oxygen level-dependent signal changes in female rats. J Neurosci. 2005, 25: 1132-1136. 10.1523/JNEUROSCI.3801-04.2005. Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Lanciego JL, Labandeira-Garcia JL: Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson's disease. Exp Neurol. 2010, 224: 517-26. 10.1016/j.expneurol.2010.05.015. Mannino CA, South SM, Inturrisi CE, Quinones-Jenab V: Pharmacokinetics and effects of 17beta-estradiol and progesterone implants in ovariectomized rats. J Pain. 2005, 6: 809-816. 10.1016/j.jpain.2005.07.007. Fugger HN, Foster TC, Gustafsson J, Rissman EF: Novel effects of estradiol and estrogen receptor alpha and beta on cognitive function. Brain Res. 2000, 883: 258-264. 10.1016/S0006-8993(00)02993-0. Unger T: Inhibiting angiotensin receptors in the brain: possible therapeutic implications. Curr Med Res Opin. 2003, 19: 449-451. 10.1185/030079903125001974. Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM: Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience. 1995, 67: 631-647. 10.1016/0306-4522(95)00066-R. Sauer H, Oertel WH: Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunohistochemical study in the rat. Neuroscience. 1994, 59: 401-415. 10.1016/0306-4522(94)90605-X. Hemming ML, Selkoe DJ, Farris W: Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid β-protein metabolism in mouse models of Alzheimer disease. Neurobiol Dis. 2007, 26: 273-281. 10.1016/j.nbd.2007.01.004. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW: Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994, 74: 1141-1148. Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF: Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol. 2006, 291: H2210-2215. 10.1152/ajpheart.01270.2005. Gundersen HJG, Bendsen TF, Korbo L, Marcussen N, Moller A, Nielsen K: Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APIMS. 1988, 96: 379-394. 10.1111/j.1699-0463.1988.tb05320.x.