Rào cản máu-não trong quá trình lão hóa và bệnh Alzheimer

Fernanda Marques1, João Carlos Sousa1, Nuno Sousa1, Joana Almeida Palha1
1Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal

Tóm tắt

Tóm tắt

Quá trình lão hóa có sự tương quan với sự suy giảm dần dần trong chức năng tế bào và cơ quan bình thường; những thay đổi này trở nên trầm trọng hơn trong bệnh Alzheimer (AD). Cả trong lão hóa và AD đều có sự giảm chung về khả năng của cơ thể trong việc loại bỏ các hợp chất độc hại và, đồng thời, cung cấp cho não các yếu tố tăng trưởng và dinh dưỡng có liên quan. Các rào cản của não là mục tiêu của sự mất chức năng liên quan đến tuổi tác này; cả tế bào nội mô của hàng rào máu-não và tế bào biểu mô của hàng rào dịch não tủy giảm khả năng tiết ra chất đối với não và khả năng loại bỏ các hợp chất độc hại khỏi não. Ngoài ra, trong quá trình lão hóa bình thường và trong AD, tính thấm của các rào cản não tăng lên. Do đó, việc tiếp xúc nhiều hơn giữa nhu mô não với thành phần máu làm thay đổi môi trường thần kinh được kiểm soát chặt chẽ, điều này ảnh hưởng đến chức năng thần kinh. Điều thú vị là, các rào cản não không chỉ là những trở ngại đơn thuần cho việc đi qua của các phân tử và tế bào, mà còn là những tác nhân tích cực trong sự cân bằng nội môi của não, điều này vẫn cần được công nhận và nghiên cứu thêm trong bối cảnh sức khỏe và bệnh tật. Trong bài viết này, chúng tôi cung cấp một tổng quan về cách các rào cản não thay đổi trong quá trình lão hóa và trong AD và cách những quá trình này ảnh hưởng đến chức năng não.

Từ khóa


Tài liệu tham khảo

Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM: Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007, 3: 186-191.

Selkoe DJ: Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001, 81: 741-766.

Sotiropoulos I, Catania C, Pinto LG, Silva R, Pollerberg GE, Takashima A, Sousa N, Almeida OF: Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J Neurosci. 2011, 31: 7840-7847.

Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F: Proinflammatory Cytokines, Aging, and Age-Related Diseases. J Am Med Dir Assoc. 2013, S1525-8610 (13): 00280-00286.

Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis. 2010, 37: 13-25.

Engelhardt B, Coisne C: Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS. 2011, 8: 4-

Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B: Review: leucocyte-endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol. 2011, 37: 24-39.

Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, et al: The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011, 477: 90-94.

Man SM, Ma YR, Shang DS, Zhao WD, Li B, Guo DW, Fang WG, Zhu L, Chen YH: Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging. 2007, 28: 485-496.

Liu YJ, Guo DW, Tian L, Shang DS, Zhao WD, Li B, Fang WG, Zhu L, Chen YH: Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol Aging. 2010, 31: 175-188.

Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B: Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol. 2013, 521: 3389-3405.

Begley DJ, Brightman MW: Structural and functional aspects of the blood–brain barrier. Prog Drug Res. 2003, 61: 39-78.

Pardridge WM, Eisenberg J, Yang J: Human blood–brain barrier insulin receptor. J Neurochem. 1985, 44: 1771-1778.

Zhang Y, Pardridge WM: Rapid transferrin efflux from brain to blood across the blood–brain barrier. J Neurochem. 2001, 76: 1597-1600.

Zlokovic BV: The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008, 57: 178-201.

Dziegielewska KM, Ek J, Habgood MD, Saunders NR: Development of the choroid plexus. Microsc Res Tech. 2001, 52: 5-20.

Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA: Transporters of the blood–brain and blood-CSF interfaces in development and in the adult. Mol Aspects Med. 2013, 34: 742-752.

Speake T, Whitwell C, Kajita H, Majid A, Brown PD: Mechanisms of CSF secretion by the choroid plexus. Microsc Res Tech. 2001, 52: 49-59.

Segal MB: Transport of nutrients across the choroid plexus. Microsc Res Tech. 2001, 52: 38-48.

Marques F, Sousa JC, Coppola G, Falcao AM, Rodrigues AJ, Geschwind DH, Sousa N, Correia-Neves M, Palha JA: Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation. J Cereb Blood Flow Metab. 2009, 29: 921-932.

Marques F, Sousa JC, Coppola G, Geschwind DH, Sousa N, Palha JA, Correia-Neves M: The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neurosci. 2009, 10: 135-

Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N: How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med. 2000, 223: 22-38.

Sagare AP, Bell RD, Zlokovic BV: Neurovascular dysfunction and faulty amyloid beta-peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med. 2012, 2: a011452-

Bell RD, Zlokovic BV: Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 2009, 118: 103-113.

Brown WR, Thore CR: Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol. 2011, 37: 56-74.

Stoquart-ElSankari S, Baledent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME: Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab. 2007, 27: 1563-1572.

Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010, 68: 409-427.

Winkler EA, Bell RD, Zlokovic BV: Central nervous system pericytes in health and disease. Nat Neurosci. 2011, 14: 1398-1405.

Emerich DF, Skinner SJ, Borlongan CV, Vasconcellos AV, Thanos CG: The choroid plexus in the rise, fall and repair of the brain. Bioessays. 2005, 27: 262-274.

Serot JM, Bene MC, Faure GC: Choroid plexus, aging of the brain, and Alzheimer’s disease. Front Biosci. 2003, 8: s515-s521.

Preston JE: Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech. 2001, 52: 31-37.

Wen GY, Wisniewski HM, Kascsak RJ: Biondi ring tangles in the choroid plexus of Alzheimer’s disease and normal aging brains: a quantitative study. Brain Res. 1999, 832: 40-46.

Chiu C, Miller MC, Caralopoulos IN, Worden MS, Brinker T, Gordon ZN, Johanson CE, Silverberg GD: Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids Barriers CNS. 2012, 9: 3-

May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI: Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990, 40: 500-503.

Serot JM, Zmudka J, Jouanny P: A possible role for CSF turnover and choroid plexus in the pathogenesis of late onset Alzheimer’s disease. J Alzheimers Dis. 2012, 30: 17-26.

Farrall AJ, Wardlaw JM: Blood–brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiol Aging. 2009, 30: 337-352.

Zlokovic BV: Clearing amyloid through the blood–brain barrier. J Neurochem. 2004, 89: 807-811.

Marques F, Falcao AM, Sousa JC, Coppola G, Geschwind D, Sousa N, Correia-Neves M, Palha JA: Altered iron metabolism is part of the choroid plexus response to peripheral inflammation. Endocrinology. 2009, 150: 2822-2828.

Walsh DM, Selkoe DJ: A beta oligomers - a decade of discovery. J Neurochem. 2007, 101: 1172-1184.

Benilova I, Karran E, De Strooper B: The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012, 15: 349-357.

Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B: Clearance of amyloid beta-peptide from brain: transport or metabolism?. Nat Med. 2000, 6: 718-

Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, et al: A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 2012, 122: 1377-1392.

Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, Donahue JE, Johanson CE: Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging. J Neuropathol Exp Neurol. 2010, 69: 1034-1043.

van Assema DM, Lubberink M, Boellaard R, Schuit RC, Windhorst AD, Scheltens P, Lammertsma AA, van Berckel BN: P-glycoprotein function at the blood–brain barrier: effects of age and gender. Mol Imaging Biol. 2012, 14: 771-776.

van Assema DM, Lubberink M, Rizzu P, van Swieten JC, Schuit RC, Eriksson J, Scheltens P, Koepp M, Lammertsma AA, van Berckel BN: Blood–brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: effect of polymorphisms in the ABCB1 gene. EJNMMI Res. 2012, 2: 57-

Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I: Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci. 2005, 25: 10884-10893.

Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD: Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS. 2011, 8: 21-

Ingbar SH: Pre-albumin: a thyroxinebinding protein of human plasma. Endocrinology. 1958, 63: 256-259.

Dickson PW, Aldred AR, Marley PD, Bannister D, Schreiber G: Rat choroid plexus specializes in the synthesis and the secretion of transthyretin (prealbumin). Regulation of transthyretin synthesis in choroid plexus is independent from that in liver. J Biol Chem. 1986, 261: 3475-3478.

Sousa JC, Cardoso I, Marques F, Saraiva MJ, Palha JA: Transthyretin and Alzheimer’s disease: where in the brain?. Neurobiol Aging. 2007, 28: 713-718.

Palha JA: Transthyretin as a thyroid hormone carrier: function revisited. Clin Chem Lab Med. 2002, 40: 1292-1300.

Palha JA, Hays MT, Morreale de Escobar G, Episkopou V, Gottesman ME, Saraiva MJ: Transthyretin is not essential for thyroxine to reach the brain and other tissues in transthyretin-null mice. Am J Physiol. 1997, 272: E485-E493.

Wei S, Episkopou V, Piantedosi R, Maeda S, Shimada K, Gottesman ME, Blaner WS: Studies on the metabolism of retinol and retinol-binding protein in transthyretin-deficient mice produced by homologous recombination. J Biol Chem. 1995, 270: 866-870.

Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M: Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp Neurol. 2004, 189: 380-392.

Takasaki J, Ono K, Yoshiike Y, Hirohata M, Ikeda T, Morinaga A, Takashima A, Yamada M: Vitamin A has anti-oligomerization effects on amyloid-beta in vitro. J Alzheimers Dis. 2011, 27: 271-280.

Schwarzman AL, Gregori L, Vitek MP, Lyubski S, Strittmatter WJ, Enghilde JJ, Bhasin R, Silverman J, Weisgraber KH, Coyle PK, et al: Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proc Natl Acad Sci U S A. 1994, 91: 8368-8372.

Golabek A, Marques MA, Lalowski M, Wisniewski T: Amyloid beta binding proteins in vitro and in normal human cerebrospinal fluid. Neurosci Lett. 1995, 191: 79-82.

Buxbaum J, Koziol J, Connors LH: Serum transthyretin levels in senile systemic amyloidosis: effects of age, gender and ethnicity. Amyloid. 2008, 15: 255-261.

Li X, Buxbaum JN: Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer’s disease?. Mol Neurodegener. 2011, 6: 79-

Buxbaum JN, Ye Z, Reixach N, Friske L, Levy C, Das P, Golde T, Masliah E, Roberts AR, Bartfai T: Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Abeta toxicity. Proc Natl Acad Sci U S A. 2008, 105: 2681-2686.

Choi SH, Leight SN, Lee VM, Li T, Wong PC, Johnson JA, Saraiva MJ, Sisodia SS: Accelerated Abeta deposition in APPswe/PS1deltaE9 mice with hemizygous deletions of TTR (transthyretin). J Neurosci. 2007, 27: 7006-7010.

Wati H, Kawarabayashi T, Matsubara E, Kasai A, Hirasawa T, Kubota T, Harigaya Y, Shoji M, Maeda S: Transthyretin accelerates vascular Abeta deposition in a mouse model of Alzheimer’s disease. Brain Pathol. 2009, 19: 48-57.

Sousa JC, Marques F, Dias-Ferreira E, Cerqueira JJ, Sousa N, Palha JA: Transthyretin influences spatial reference memory. Neurobiol Learn Mem. 2007, 88: 381-385.

Serot JM, Christmann D, Dubost T, Couturier M: Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1997, 63: 506-508.

Ribeiro CA, Santana I, Oliveira C, Baldeiras I, Moreira J, Saraiva MJ, Cardoso I: Transthyretin decrease in plasma of MCI and AD patients: investigation of mechanisms for disease modulation. Curr Alzheimer Res. 2012, 9: 881-889.

Palha JA, Moreira P, Wisniewski T, Frangione B, Saraiva MJ: Transthyretin gene in Alzheimer’s disease patients. Neurosci Lett. 1996, 204: 212-214.

Calero M, Rostagno A, Matsubara E, Zlokovic B, Frangione B, Ghiso J: Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech. 2000, 50: 305-315.

Marques F, Sousa JC, Coppola G, Gao F, Puga R, Brentani H, Geschwind DH, Sousa N, Correia-Neves M, Palha JA: Transcriptome signature of the adult mouse choroid plexus. Fluids Barriers CNS. 2011, 8: 10-

Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, et al: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009, 41: 1088-1093.

Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Guntert A, et al: Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry. 2010, 67: 739-748.

Silajdzic E, Minthon L, Bjorkqvist M, Hansson O: No diagnostic value of plasma clusterin in Alzheimer’s disease. PLoS ONE. 2012, 7: e50237-

Howlett DR, Hortobagyi T, Francis PT: Clusterin Associates Specifically with Abeta40 in Alzheimer’s Disease Brain Tissue. Brain Pathol. 2013, 10.1111/bpa.12057

Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J: Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood–brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci U S A. 1996, 93: 4229-4234.

Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I: Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med. 2002, 8: 1390-1397.

Christensen EI, Birn H: Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol. 2002, 3: 256-266.

Orlando RA, Rader K, Authier F, Yamazaki H, Posner BI, Bergeron JJ, Farquhar MG: Megalin is an endocytic receptor for insulin. J Am Soc Nephrol. 1998, 9: 1759-1766.

Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, Torres-Aleman I: Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging. 2006, 27: 1250-1257.

Pellicano M, Larbi A, Goldeck D, Colonna-Romano G, Buffa S, Bulati M, Rubino G, Iemolo F, Candore G, Caruso C, et al: Immune profiling of Alzheimer patients. J Neuroimmunol. 2012, 242: 52-59.

Sardi F, Fassina L, Venturini L, Inguscio M, Guerriero F, Rolfo E, Ricevuti G: Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun Rev. 2011, 11: 149-153.

Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P: Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol. 2009, 210: 3-12.

Lee CY, Landreth GE: The role of microglia in amyloid clearance from the AD brain. J Neural Transm. 2010, 117: 949-960.

Yu D, Corbett B, Yan Y, Zhang GX, Reinhart P, Cho SJ, Chin J: Early cerebrovascular inflammation in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 2012, 33: 2942-2947.

Kalaria RN: Vascular factors in Alzheimer’s disease. Int Psychogeriatr. 2003, 15 (Suppl 1): 47-52.

Kalaria RN: Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev. 2010, 68 (Suppl 2): S74-S87.

Tripathy D, Sanchez A, Yin X, Luo J, Martinez J, Grammas P: Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. Front Aging Neurosci. 2013, 5: 19-

Grammas P, Ovase R: Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging. 2001, 22: 837-842.

Grammas P, Ovase R: Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain. Am J Pathol. 2002, 160: 1583-1587.

Grammas P, Samany PG, Thirumangalakudi L: Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: implications for disease pathogenesis. J Alzheimers Dis. 2006, 9: 51-58.

Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R: Increased blood–brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol Aging. 2013, 34: 2064-2070.

Herber DL, Mercer M, Roth LM, Symmonds K, Maloney J, Wilson N, Freeman MJ, Morgan D, Gordon MN: Microglial activation is required for Abeta clearance after intracranial injection of lipopolysaccharide in APP transgenic mice. J Neuroimmune Pharmacol. 2007, 2: 222-231.

Marques F, Rodrigues AJ, Sousa JC, Coppola G, Geschwind DH, Sousa N, Correia-Neves M, Palha JA: Lipocalin 2 is a choroid plexus acute-phase protein. J Cereb Blood Flow Metab. 2008, 28: 450-455.

Kjeldsen L, Cowland JB, Borregaard N: Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta. 2000, 1482: 272-283.

Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004, 432: 917-921.

Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, et al: An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem. 2002, 277: 45518-45528.

Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, et al: Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell. 2010, 142: 857-867.

Liu B, Moloney A, Meehan S, Morris K, Thomas SE, Serpell LC, Hider R, Marciniak SJ, Lomas DA, Crowther DC: Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem. 2011, 286: 4248-4256.

Choi J, Lee HW, Suk K: Increased plasma levels of lipocalin 2 in mild cognitive impairment. J Neurol Sci. 2011, 305: 28-33.

Naude PJ, Nyakas C, Eiden LE, Ait-Ali D, van der Heide R, Engelborghs S, Luiten PG, De Deyn PP, den Boer JA, Eisel UL: Lipocalin 2: novel component of proinflammatory signaling in Alzheimer’s disease. Faseb J. 2012, 26: 2811-2823.

Ferreira AC, Pinto V, Da Mesquita S, Novais A, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F: Lipocalin-2 is involved in emotional behaviors and cognitive function. Front Cell Neurosci. 2013, 7: 122-

Mucha M, Skrzypiec AE, Schiavon E, Attwood BK, Kucerova E, Pawlak R: Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc Natl Acad Sci U S A. 2011, 108: 18436-18441.

Skrzypiec AE, Shah RS, Schiavon E, Baker E, Skene N, Pawlak R, Mucha M: Stress-induced lipocalin-2 controls dendritic spine formation and neuronal activity in the amygdala. PLoS ONE. 2013, 8: e61046-