HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs?

Cláudia A. Simões-Pires1, Vincent Zwick1, Alessandra Nurisso1, Esther Schenker2, Pierre Alain Carrupt1, Muriel Cuendet1
1School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
2Institut de Recherches Servier, Rue de la République 3, 92150, Suresnes, France

Tóm tắt

Abstract Histone deacetylase (HDAC) inhibitors have been demonstrated to be beneficial in animal models of neurodegenerative diseases. Such results were mainly associated with the epigenetic modulation caused by HDACs, especially those from class I, via chromatin deacetylation. However, other mechanisms may contribute to the neuroprotective effect of HDAC inhibitors, since each HDAC may present distinct specific functions within the neurodegenerative cascades. Such an example is HDAC6 for which the role in neurodegeneration has been partially elucidated so far. The strategy to be adopted in promising therapeutics targeting HDAC6 is still controversial. Specific inhibitors exert neuroprotection by increasing the acetylation levels of α-tubulin with subsequent improvement of the axonal transport, which is usually impaired in neurodegenerative disorders. On the other hand, an induction of HDAC6 would theoretically contribute to the degradation of protein aggregates which characterize various neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Hutington’s diseases. This review describes the specific role of HDAC6 compared to the other HDACs in the context of neurodegeneration, by collecting in silico, in vitro and in vivo results regarding the inhibition and/or knockdown of HDAC6 and other HDACs. Moreover, structure, function, subcellular localization, as well as the level of HDAC6 expression within brain regions are reviewed and compared to the other HDAC isoforms. In various neurodegenerative diseases, the mechanisms underlying HDAC6 interaction with other proteins seem to be a promising approach in understanding the modulation of HDAC6 activity.

Từ khóa


Tài liệu tham khảo

Xu WS, Parmigiani RB, Marks PA: Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007, 26: 5541-5552. 10.1038/sj.onc.1210620.

Walkinshaw DR, Tahmasebi S, Bertos NR, Yang XJ: Histone deacetylases as transducers and targets of nuclear signaling. J Cell Biochem. 2008, 104: 1541-1552. 10.1002/jcb.21746.

Lahm A, Paolini C, Pallaoro M, Nardi M, Jones P, Neddermann P, Sambucini S, Bottomley M, Lo Surdo P, Carfi A, et al: Unraveling the hidden catalytic activity of vertebrate class Ila histone deacetylases. Proc Natl Acad Sci USA. 2007, 104: 17335-17340. 10.1073/pnas.0706487104.

Boyault C, Zhang Y, Fritah S, Caron C, Gilquin B, Kwon SH, Garrido C, Yao TP, Vourc’h C, Matthias P, et al: HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007, 21: 2172-2181. 10.1101/gad.436407.

Haberland M, Montgomery RL, Olson EN: The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009, 10: 32-42. 10.1038/nrg2485.

Dietz KC, Casaccia P: HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol Res. 2010, 62: 11-17. 10.1016/j.phrs.2010.01.011.

Dokmanovic M, Clarke C, Marks PA: Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007, 5: 981-989. 10.1158/1541-7786.MCR-07-0324.

De Ruijter AJM, van Gennip AH, Caron HN, Kemp S, Van Kuilenburg ABP: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003, 370: 737-749. 10.1042/BJ20021321.

Fischer A, Sananbenesi F, Mungenast A, Tsai LH: Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci. 2010, 31: 605-617. 10.1016/j.tips.2010.09.003.

Mai A, Massa S, Pezzi R, Simeoni S, Rotili D, Nebbioso A, Scognamiglio A, Altucci L, Loidl P, Brosch G: Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J Med Assoc Thai. 2005, 48: 3344-3353.

Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ: Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosc. 2007, 31: 47-58. 10.1007/BF02686117.

Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D: Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001, 11: 162-166. 10.1016/S0959-437X(00)00174-X.

Gao L, Cueto MA, Asselbergs F, Atadja P: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002, 277: 25748-25755. 10.1074/jbc.M111871200.

Saha RN, Pahan K: HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 2005, 13: 539-550.

Selvi BR, Cassel JC, Kundu TK, Boutillier AL: Tuning acetylation levels with HAT activators: therapeutic strategy in neurodegenerative diseases. Biochim Biophys Acta. 2010, 1799: 840-853. 10.1016/j.bbagrm.2010.08.012.

Sleiman SF, Basso M, Mahishi L, Kozikowski AP, Donohoe ME, Langley B, Ratan RR: Putting the “HATI” back on survival signalling: the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opin Inv Drugs. 2009, 18: 573-584. 10.1517/13543780902810345.

Gray S: Targeting Huntington’s disease through histone deacetylases. Clin Epigen. 2011, 2: 257-277. 10.1007/s13148-011-0025-7.

Tang H, Wang XS, Huang XP, Roth BL, Butler KV, Kozikowski AP, Jung M, Tropsha A: Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model. 2009, 49: 461-476. 10.1021/ci800366f.

Li G, Jiang H, Chang M, Xie H, Hu L: HDAC6 α-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J Neurol Sci. 2011, 304: 1-8. 10.1016/j.jns.2011.02.017.

Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP: Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999, 401: 188-193. 10.1038/43710.

Wang DF, Helquist P, Wiech NL, Wiest O: Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class I histone deacetylases. J Med Chem. 2005, 48: 6936-6947. 10.1021/jm0505011.

Wang D: Computational studies on the histone deacetylases and the design of selective histone deacetylase inhibitors. Curr Topics Med Chem. 2009, 9: 241-256. 10.2174/156802609788085287.

Vannini A, Volpari C, Di Marco S: Crystal structure of the quorum-sensing protein TraM and its interaction with the transcriptional regulator TraR. J Biol Chem. 2004, 279: 24291-24296. 10.1074/jbc.M401855200.

Khan SN, Khan AU: Role of histone acetylation in cell physiology and diseases: an update. Clin Chim Acta. 2010, 411: 1401-1411. 10.1016/j.cca.2010.06.020.

Gregoretti IV, Lee YM, Goodson HV: Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004, 338: 17-31. 10.1016/j.jmb.2004.02.006.

Bertrand P: Inside HDAC with HDAC inhibitors. Eur J Med Chem. 2010, 45: 2095-2116. 10.1016/j.ejmech.2010.02.030.

Witt O, Deubzer HE, Milde T, Oehme I: HDAC family: what are the cancer relevant targets?. Cancer Lett. 2009, 277: 8-21. 10.1016/j.canlet.2008.08.016.

Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, Loppnau P, Mazitschek R, Kwiatkowski NP, Lewis TA, Maglathin RL, et al: Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem. 2008, 283: 11355-11363. 10.1074/jbc.M707362200.

Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, MacKenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG: Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini. J Biol Chem. 2012, 287: 2317-2327. 10.1074/jbc.M111.273730.

Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, et al: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003, 23: 9418-9427.

Bertos NR, Gilquin B, Chan GKT, Yen TJ, Khochbin S, Yang XJ: Role of the tetradecapeptide repeat domain of human histone deacetylase 6 in cytoplasmic retention. J Biol Chem. 2004, 279: 48246-48254. 10.1074/jbc.M408583200.

Ding H, Dolan PJ, Johnson GVW: Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem. 2008, 106: 2119-2130. 10.1111/j.1471-4159.2008.05564.x.

Hook SS, Orian A, Cowley SM, Eisenman RN: Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc Natl Acad Sci USA. 2002, 99: 13425-13430. 10.1073/pnas.172511699.

Pai MT, Tzeng SR, Kovacs JJ, Keaton MA, Li SSC, Yao TP, Zhou P: Solution structure of the Ubp-M BUZ domain, a highly specific protein module that recognizes the C-terminal tail of free ubiquitin. J Mol Biol. 2007, 370: 290-302. 10.1016/j.jmb.2007.04.015.

Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD: The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell. 2006, 124: 1197-1208. 10.1016/j.cell.2006.02.038.

Zhang L, Fang H, Xu W: Strategies in developing promising histone deacetylase inhibitors. Med Res Rev. 2010, 30: 585-602. 10.1002/med.20169.

Estiu G, Greenberg E, Harrison CB, Kwiatkowski NP, Mazitschek R, Bradner JE, Wiest O: Structural origin of selectivity in class II-selective histone deacetylase inhibitors. J Med Chem. 2008, 51: 2898-2906. 10.1021/jm7015254.

Charrier C, Clarhaut J, Gesson JP, Estiu G, Wiest O, Roche J, Bertrand P: Synthesis and modeling of new benzofuranone histone deacetylase inhibitors that stimulate tumor suppressor gene expression. J Med Chem. 2009, 52: 3112-3115. 10.1021/jm9002439.

Kozikowski AP, Tapadar S, Luchini DN, Kim KH, Billadeau DD: Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J Med Chem. 2008, 51: 4370-4373. 10.1021/jm8002894.

Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP: Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc. 2010, 132: 10842-10846. 10.1021/ja102758v.

Schäfer S, Saunders L, Schlimme S, Valkov V, Wagner J, Kratz F, Sippl W, Verdin E, Jung M: Pyridylalanine-containing hydroxamic acids as selective HDAC6 inhibitors. Chem Med Chem. 2009, 4: 283-290.

Kong Y, Jung M, Wang K, Grindrod S, Velena A, Lee SA, Dakshanamurthy S, Yang Y, Miessau M, Zheng C, et al: Histone deacetylase cytoplasmic trapping by a novel fluorescent HDAC inhibitor. Mol Cancer Ther. 2011, 10: 1591-1599. 10.1158/1535-7163.MCT-10-0779.

Schlimme S, Hauser AT, Carafa V, Heinke R, Kannan S, Stolfa DA, Cellamare S, Carotti A, Altucci L, Jung M, et al: Carbamate prodrug concept for hydroxamate HDAC inhibitors. Chem Med Chem. 2011, 6: 1193-1198.

Schäfer S, Saunders L, Eliseeva E, Velena A, Jung M, Schwienhorst A, Strasser A, Dickmanns A, Ficner R, Schlimme S, et al: Phenylalanine-containing hydroxamic acids as selective inhibitors of class IIb histone deacetylases (HDACs). Bioorg Med Chem. 2008, 16: 2011-2033. 10.1016/j.bmc.2007.10.092.

Zou H, Wu Y, Navre M, Sang BC: Characterization of the two catalytic domains in histone deacetylase 6. Biochem Biophys Res Commun. 2006, 341: 45-50. 10.1016/j.bbrc.2005.12.144.

Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T, et al: Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci. 2007, 27: 6128-6140. 10.1523/JNEUROSCI.0296-07.2007.

Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH: Recovery of learning and memory is associated with chromatin remodelling. Nature. 2007, 447: 178-182. 10.1038/nature05772.

Nithianantharajah J, Hannan AJ: Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006, 7: 697-709. 10.1038/nrn1970.

Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, et al: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010, 328: 753-756. 10.1126/science.1186088.

Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH: Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999, 402: 615-622. 10.1038/45159.

Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, Guan JS, Lee BH, Moy LY, Giusti P, et al: Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron. 2008, 60: 803-817. 10.1016/j.neuron.2008.10.015.

Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, et al: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009, 459: 55-60. 10.1038/nature07925.

Hawk JD, Florian C, Abel T: Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learn Mem. 2011, 18: 367-370. 10.1101/lm.2097411.

McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, et al: HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci. 2011, 31: 764-774. 10.1523/JNEUROSCI.5052-10.2011.

Bardai FH, D’Mello SR: Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J Neurosci. 2011, 31: 1746-1751. 10.1523/JNEUROSCI.5704-10.2011.

Yang XJ, Grégoire S: Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol. 2005, 25: 2873-2884. 10.1128/MCB.25.8.2873-2884.2005.

Bolger TA, Yao TP: Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci. 2005, 25: 9544-9553. 10.1523/JNEUROSCI.1826-05.2005.

Chen B, Cepko CL: HDAC4 regulates neuronal survival in normal and diseased retinas. Science. 2009, 323: 256-259. 10.1126/science.1166226.

Wang WH, Cheng LC, Pan FY, Xue B, Wang DY, Chen Z, Li CJ: Intracellular trafficking of histone deacetylase 4 regulates long-term memory formation. Anatom Rec. 2011, 294: 1025-1034. 10.1002/ar.21389.

Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM: Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci. 2009, 29: 8288-8297. 10.1523/JNEUROSCI.0097-09.2009.

Kim JY, Casaccia P: HDAC1 in axonal degeneration: a matter of subcellular localization. Cell Cycle. 2010, 9: 3680-3684.

Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, et al: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008, 409: 581-589. 10.1042/BJ20070779.

Jiang Q, Ren Y, Feng J: Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J Neurosci. 2008, 28: 12993-13002. 10.1523/JNEUROSCI.2860-08.2008.

Su M, Shi JJ, Yang YP, Li J, Zhang YL, Chen J, Hu LF, Liu CF: HDAC6 regulates aggresome-autophagy degradation pathway of α-synuclein in response to MPP+-induced stress. J Neurochem. 2011, 117: 112-120. 10.1111/j.1471-4159.2011.07180.x.

Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F: Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci. 2007, 27: 3571-3583. 10.1523/JNEUROSCI.0037-07.2007.

Iwata A, Riley BE, Johnston JA, Kopito RR: HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005, 280: 40282-40292. 10.1074/jbc.M508786200.

Parmigiani R, Xu W, Venta-Perez G, Erdjument-Bromage H, Yaneva M, Tempst P, Marks P: HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci USA. 2008, 105: 9633-9638. 10.1073/pnas.0803749105.

Chen S, Owens GC, Makarenkova H, Edelman DB: HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010, 5: e10848-10.1371/journal.pone.0010848.

Kozikowski AP, Chen Y, Gaysin A, Chen B, D’Annibale MA, Suto CM, Langley BC: Functional differences in epigenetic modulators - superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J Med Chem. 2007, 50: 3054-3061. 10.1021/jm070178x.

Heltweg B, Dequiedt F, Marshall BL, Brauch C, Yoshida M, Nishino N, Verdin E, Jung M: Subtype selective substrates for histone deacetylases. J Med Chem. 2004, 47: 5235-5243. 10.1021/jm0497592.

Nuutinen T, Suuronen T, Kyrylenko S, Huuskonen J, Salminen A: Induction of clusterin/apoJ expression by histone deacetylase inhibitors in neural cells. Neurochem Int. 2005, 47: 528-538. 10.1016/j.neuint.2005.07.007.

Hartl FU, Hayer-Hartl M: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002, 295: 1852-1858. 10.1126/science.1068408.

Wong E, Cuervo AM: Autophagy gone away in neurodegenerative diseases. Nat Neurosci. 2010, 13: 805-811. 10.1038/nn.2575.

Ciechanover A, Brundin P: The ubiquitin proteasome system in neurodegenerative diseases: Sometimes the chicken, sometimes the egg. Neuron. 2003, 40: 427-446. 10.1016/S0896-6273(03)00606-8.

Wyttenbach A, Arrigo AP: The role of heat shock proteins during neurodegeneration in Alzheimer’s, Parkinson’s and Huntington’s disease. Heat Shock Proteins in Neural Cells. Edited by: Richter-Landsberg C. 2006, Landes Bioscience, Austin

Adams J: The proteasome: a suitable antineoplastic target. Nat Rev Canc. 2004, 4: 349-360. 10.1038/nrc1361.

Ande SR, Chen J, Maddika S: The ubiquitin pathway: an emerging drug target in cancer therapy. Eur J Pharmacol. 2009, 625: 199-205. 10.1016/j.ejphar.2009.08.042.

Bennett EJ, Bence NF, Jayakumar R, Kopito RR: Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell. 2005, 17: 351-365. 10.1016/j.molcel.2004.12.021.

Taylor JP, Hardy J, Fischbeck KH: Toxic proteins in neurodegenerative disease. Science. 2002, 296: 1991-1995. 10.1126/science.1067122.

Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ: Ubiquitin is a common factor in intermediate filament inclusion-bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibers in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver-disease. J Pathol. 1988, 155: 9-15. 10.1002/path.1711550105.

Dickson DW, Schmidt ML, Lee VMY, Zhao ML, Yen SH, Trojanowski JQ: Immunoreactivity profile of hippocampal CA2/3 neurites in diffuse Lewy body disease. Acta Neuropathol. 1994, 87: 269-276. 10.1007/BF00296742.

Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP: Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997, 90: 537-548. 10.1016/S0092-8674(00)80513-9.

Perry G, Friedman R, Shaw G, Chau V: Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA. 1987, 84: 3033-3036. 10.1073/pnas.84.9.3033.

Lindersson E, Beedholm R, Hojrup P, Moos T, Gai WP, Hendil KB, Jensen PH: Proteasomal inhibition by α-synuclein filaments and oligomers. J Biol Chem. 2004, 279: 12924-12934.

Lim KL, Tan J: Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochem. 2007, 8: S13-10.1186/1471-2091-8-S1-S13.

Bence NF, Sampat RM, Kopito RR: Impairment of the ubiquitin-proteasome system by protein aggregation. Science. 2001, 292: 1552-1555. 10.1126/science.292.5521.1552.

Keck S, Nitsch R, Grune T, Ullrich O: Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem. 2003, 85: 115-122. 10.1046/j.1471-4159.2003.01642.x.

Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003, 115: 727-738. 10.1016/S0092-8674(03)00939-5.

Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, Rousseaux S, Khochbin S: Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol. 2001, 21: 8035-8044. 10.1128/MCB.21.23.8035-8044.2001.

DeLaBarre B, Brunger AT: Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Mol Biol. 2003, 10: 856-863. 10.1038/nsb972.

Song C, Xiao Z, Nagashima K, Li CC, Lockett SJ, Dai RM, Cho EH, Conrads TP, Veenstra TD, Colburn NH, et al: The heavy metal cadmium induces valosin-containing protein (VCP)-mediated aggresome formation. Toxicol Appl Pharmacol. 2008, 228: 351-363. 10.1016/j.taap.2007.12.026.

Boyault C, Gilquin B, Zhang Y, Rybin V, Garman E, Meyer-Klaucke W, Matthias P, Muller CW, Khochbin S: HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 2006, 25: 3357-3366. 10.1038/sj.emboj.7601210.

Du G, Jiao R: To prevent neurodegeneration: HDAC6 uses different strategies for different challenges. Commun Integr Biol. 2011, 4: 139-142. 10.4161/cib.4.2.14272.

Kalveram B, Schmidtke G, Groettrup M: The ubiquitin-like modifier FAT10 interacts with HDAC6 and localizes to aggresomes under proteasome inhibition. J Cell Sci. 2008, 121: 4079-4088. 10.1242/jcs.035006.

Cook C, Gendron TF, Scheffel K, Carlomagno Y, Dunmore J, DeTure M, Petrucelli L: Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation. Human Mol Gen. 2012, 21: 2936-2945. 10.1093/hmg/dds125.

Rivieccio MA, Brochier C, Willis DE, Walker BA, D’Annibale MA, McLaughlin K, Siddiq A, Kozikowski AP, Jaffrey SR, Twiss JL, et al: HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci USA. 2009, 106: 19599-19604. 10.1073/pnas.0907935106.

Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS: Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol. 2007, 178: 1025-1038. 10.1083/jcb.200611128.

Salminen A, Tapiola T, Korhonen P, Suuronen T: Neuronal apoptosis induced by histone deacetylase inhibitors. Mol Brain Res. 1998, 61: 203-206. 10.1016/S0169-328X(98)00210-1.

Leroy K, Yilmaz Z, Brion JP: Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol. 2007, 33: 43-55.

Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, Vanbelle G, Berg L: The Consortium to Establish a Registry for Alzheimers's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimers's disease. Neurology. 1991, 41: 479-486. 10.1212/WNL.41.4.479.

Fortin NJ, Agster KL, Eichenbaum HB: Critical role of the hippocampus in memory for sequences of events. Nat Neurosci. 2002, 5: 458-462.

Delacourte A, Sergeant N, Champain D, Wattez A, Maurage CA, Lebert F, Pasquier F, David JP: Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer's disease. Neurology. 2002, 59: 398-407. 10.1212/WNL.59.3.398.

Perez M, Santa-Maria I, De Barreda EG, Zhu X, Cuadros R, Cabrero JR, Sanchez-Madrid F, Dawson HN, Vitek MP, Perry G, et al: Tau - an inhibitor of deacetylase HDAC6 function. J Neurochem. 2009, 109: 1756-1766. 10.1111/j.1471-4159.2009.06102.x.

Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schlüter OM, Bradke F, Lu J, Fischer A: Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med. 2012, 5: 52-63.

Xu J, Kao SY, Lee FJS, Song WH, Jin LW, Yankner BA: Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nature Med. 2002, 8: 600-606. 10.1038/nm0602-600.

Zarow C, Lyness SA, Mortimer JA, Chui HC: Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol. 2003, 60: 337-341. 10.1001/archneur.60.3.337.

Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ: A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002, 22: 3090-3099.

Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L: Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science. 2000, 287: 1265-1269. 10.1126/science.287.5456.1265.

Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, et al: α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006, 313: 324-328. 10.1126/science.1129462.

Du G, Liu X, Chen X, Song M, Yan Y, Jiao R, Wang C: Drosophila histone deacetylase 6 protects dopaminergic neurons against α-synuclein toxicity by promoting inclusion formation. Mol Biol Cell. 2010, 21: 2128-2137. 10.1091/mbc.E10-03-0200.

Savitt JM, Dawson VL, Dawson TM: Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006, 116: 1744-1754. 10.1172/JCI29178.

Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP: Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol. 2010, 189: 671-679. 10.1083/jcb.201001039.

Hughes RE, Lo RS, Davis C, Strand AD, Neal CL, Olson JM, Fields S: Altered transcription in yeast expressing expanded polyglutamine. Proc Natl Acad Sci USA. 2001, 98: 13201-13206. 10.1073/pnas.191498198.

Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, Ren SR, Li XJ, Albin RL, Detloff PJ: Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Human Mol Gen. 2001, 10: 137-144. 10.1093/hmg/10.2.137.

Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LSB: Disruption of axonal transport by loss of huntingtin or expression of pathogenic PolyQ proteins in Drosophila. Neuron. 2003, 40: 25-40. 10.1016/S0896-6273(03)00594-4.

Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ, et al: Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem. 2005, 280: 556-563.

Bonini NM: Chaperoning brain degeneration. Proc Natl Acad Sci USA. 2002, 99: 16407-16411. 10.1073/pnas.152330499.

Bobrowska A, Paganetti P, Matthias P, Bates GP: Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLoS One. 2011, 6: e20696-10.1371/journal.pone.0020696.

D’Ydewalle C, Krishnan J, Chiheb DM, Van Damme P, Irobi J, Kozikowski AP, Vanden Berghe P, Timmerman V, Robberecht W, Van Den Bosch L: HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med. 2011, 17: 968-974. 10.1038/nm.2396.

Fiesel FC, Voigt A, Weber SS, Van den Haute C, Waldenmaier A, Gorner K, Walter M, Anderson ML, Kern JV, Rasse TM, et al: Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J. 2010, 29: 209-221. 10.1038/emboj.2009.324.

Wells JA, McClendon CL: Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature. 2007, 450: 1001-1009. 10.1038/nature06526.