Springer Science and Business Media LLC
2199-1197
Cơ quản chủ quản: N/A
Các bài báo tiêu biểu
α-Amylase catalyses the hydrolysis of starch and ultimately producing glucose. Controlling the catalytic activity of this enzyme reduces glucose production in the postprandial stage, which could be a therapeutic benefit for people with diabetes. This study was conducted to evaluate α-amylase inhibition for utilizing the crude extracts of some medicinal plants traditionally used in Nepal for the treatment of diabetes and its related complications.
Microtiter plate approach has been used to assess inhibitory activities of in vitro α-amylase of methanolic extracts of thirty-two medicinal plants. A starch tolerance test was used in rats to investigate the in vivo study of the methanolic extract concerning glibenclamide as the positive control.
Enzymatic assay for α-amylase inhibition using extracts was successfully evaluated. Also, the in-vitro and in-vivo study model revealed that medicinal plants could be a potent source of α-amylase inhibition. So, they could serve as potential candidates for future drug development strategies for curing diabetes with minimal or no adverse side effects.
In the present era, the attention of nutritionist diverted towards the bioactive entities present in natural sources owing to the presence of health boosting perspectives against lifestyle related disarrays.
In this context, different parts of ginger crop i.e. rhizome, leaves and flower of variety Suravi (ID no. 008) were used for the preparation of ginger extracts with 50% methanol, 50% ethanol and water via rotatory shaker for 45 min. After that, different phytochemical analysis and in vitro analyses were carried out to determine the antioxidant potential of these extracts. Lastly, the best selected extracts from each part was quantified through HPLC.
The results of current investigated indicated that ethanol extract proved to have maximum quantity of phytoceutics as compared to methanol and water. The maximum TPC, flavonoids, flavonols, DPPH assay, antioxidant activity, FRAP assay, ABTS assay and metal chelating potential was observed in ginger leaves as 780.56 ± 32.78 GAE/100 g, 253.56 ± 10.65 mg/100 g, 49.54 ± 1.74 mg/100 g, 75.54 ± 3.17%, 77.88 ± 3.27%, 105.72 ± 4.44 μmole TE/g, 118.43 ± 4.97 μmole TE/g and 35.16 ± 1.48%, respectively followed by ginger flowers and ginger rhizome. The lowest antioxidant activity was estimated in ginger rhizome. On the basis of phytochemical profiling and in vitro analyses, ethanol extracts of ginger flowers, leaves and rhizome were selected for the quantification through HPLC.
The findings proved that maximum 6-gingerol was present in ginger leaves (4.9 mg/g) tackled by ginger flowers (2.87 mg/g) and ginger rhizome (1.03 mg/g).
Bột thô khô của cây được chiết xuất bằng methanol và làm khô bằng máy bốc hơi quay. Chiết xuất tiếp tục được phân chia theo độ phân cực tăng dần: N-hexane < chloroform < ethyl-acetate < methanol theo phương pháp Kupchan được cải tiến. Sau đó, các phần chiết xuất khác nhau được nghiên cứu về đặc tính dược lý của chúng. Các hợp chất được phân lập từ phần n-hexane qua quá trình sắc ký cột, sau đó là TLC và cấu trúc được xác định bằng phân tích mẫu sử dụng 1H-NMR và so sánh với báo cáo hóa học thực vật đã được công bố.
Stem bark of
The HPLC studies were carried out to standardize the stem bark ethanolic extract of
HPLC analysis of ALEE revealed the presence of ellagic acid. ALEE treatment (200 and 400 mg/kg) significantly inhibited pain response in both models. ALEE treatments prevented the raise of paw volume in both in-vivo models with percent inhibition of 44.40 and 46.21, respectively at 5 h. ALEE also showed a significant reduction of yeast-induced pyrexia till 4 h of treatment.
ALEE exhibited analgesic, anti-inflammatory and antipyretic property in experimental models and validates traditional use of ALEE in pain, inflammation and fever.
Rats dosed once with 5000 mg/kg extracts of each of these plants served as acute study (AS) while rats dosed daily with 2000 mg/kg for 2, 12 and 14 weeks served as sub-acute (SAS), sub-chronic (SCS) and chronic (CS) studies, respectively. Rats administered distilled water served as the negative control (NC).
Thus, nonlethal, reversible toxic insults occur in short-term usage (AS); while, insidious lethal toxic effects occur in medium-term (SAS) and long-term usage (SCS and CS). The ability of these plant to maintain adequate hematological parameters, bodyweight and absence of mortality may explain free usage of preparations made from these plants in folkloric medicine.
This review aims at establishing the emerging applications of phytobiotics in water treatment and disinfection.
Statistical analysis of data obtained revealed that the use of plant product in water treatment needs more research attention. A major observation is that plants possess multifaceted components and can be sustainably developed into products for water treatment. The seed (24.53%), flower (20.75), leaf (16.98%) and fruit (11.32%) biomasses are preferred against bulb (3.77%), resin (1.89%), bark (1.89%) and tuber (1.89%). The observation suggests that novel applications of plant in water treatment need further exploration since vast and broader antimicrobial activities (63.63%) is reported than water treatment application (36.37%).
This review has revealed the existing knowledge gaps in exploration of plant resources for water treatment and product development. Chemical complexity of some plant extracts, lack of standardisation, slow working rate, poor water solubility, extraction and purification complexities are limitations that need to be overcome for industrial adoption of phytochemicals in water treatment. The field of phytobiotics should engage modern methodologies such as proteomics, genomics, and metabolomics to minimise challenges confronting phytobiotic standardisation. The knowledge disseminated awaits novel application for plant product development in water treatment.