Pigment Cell and Melanoma Research
SCOPUS (2008-2023)SCIE-ISI
1755-148X
1755-1471
Anh Quốc
Cơ quản chủ quản: WILEY , Wiley-Blackwell Publishing Ltd
Các bài báo tiêu biểu
During the 2011 International Pigment Cell Conference (IPCC), the Vitiligo European Taskforce (VETF) convened a consensus conference on issues of global importance for vitiligo clinical research. As suggested by an international panel of experts, the conference focused on four topics: classification and nomenclature; definition of stable disease; definition of Koebner’s phenomenon (KP); and ‘autoimmune vitiligo’. These topics were discussed in seven working groups representing different geographical regions. A consensus emerged that segmental vitiligo be classified separately from all other forms of vitiligo and that the term ‘vitiligo’ be used as an umbrella term for all non‐segmental forms of vitiligo, including ‘mixed vitiligo’ in which segmental and non‐segmental vitiligo are combined and which is considered a subgroup of vitiligo. Further, the conference recommends that disease stability be best assessed based on the stability of individual lesions rather than the overall stability of the disease as the latter is difficult to define precisely and reliably. The conference also endorsed the classification of KP for vitiligo as proposed by the VETF (history based, clinical observation based, or experimentally induced). Lastly, the conference agreed that ‘autoimmune vitiligo’ should not be used as a separate classification as published evidence indicates that the pathophysiology of all forms of vitiligo likely involves autoimmune or inflammatory mechanisms.
Malignant melanoma is a chemotherapy‐resistant cancer with high mortality. Recent advances in our understanding of the disease at the molecular level have indicated that it shares many characteristics with developmental precursors to melanocytes, the mature pigment‐producing cells of the skin and hair follicles. The development of melanocytes absolutely depends on the action of the microphthalmia‐associated transcription factor (MITF). MITF has been shown to regulate a broad variety of genes, whose functions range from pigment production to cell‐cycle regulation, migration and survival. However, the existing list of targets is not sufficient to explain the role of MITF in melanocyte development and melanoma progression. DNA microarray analysis of gene expression offers a straightforward approach to identify new target genes, but standard analytical procedures are susceptible to the generation of false positives and require additional experimental steps for validation. Here, we introduce a new strategy where two DNA microarray‐based approaches for identifying transcription factor targets are combined in a cross‐validation protocol designed to help control false‐positive generation. We use this two‐step approach to successfully re‐identify thirteen previously recorded targets of MITF‐mediated upregulation, as well as 71 novel targets. Many of these new targets have known relevance to pigmentation and melanoma biology, and further emphasize the critical role of MITF in these processes.
Melanins (eumelanin and pheomelanin) are synthesized in insects for several purposes including cuticle sclerotization and color patterning, clot formation, organogenesis, and innate immunity. Traditional views of insect immunity detail the storage of pro‐phenoloxidases inside specialized blood cells (hemocytes) and their release upon recognition of foreign bodies. Activated phenoloxidases convert monophenols into reactive quinones in a two‐step enzymatic reaction, and until recently, the mechanism of tyrosine hydroxylation remained a mystery. Herein, we present our interpretations of these enzyme–substrate complexes. The resultant melanins are deposited onto the surface of microbes to immobilize, agglutinate, and suffocate them. Phenoloxidase activity and melanin production are not limited to the blood (hemolymph) or cuticle, as recent evidence points to more diverse, sophisticated interactions in the gut and with the resident symbionts. This review offers insight into the somewhat neglected areas of insect melanogenesis research, particularly in innate immunity, its role in beneficial insects such as pollinators, the functional versatility of phenoloxidases, and the limitations of common experimental approaches that may impede progress inadvertently.
Sex‐linked barring, a common plumage colour found in chickens, is characterized by black and white barred feathers. Previous studies have indicated that the white bands are caused by an absence of melanocytes in the feather follicle during the growth of this region. Here, we show that Sex‐linked barring is controlled by the
Skin pigmentation involves the production of the pigment melanin by melanocytes, in melanosomes and subsequent transfer to keratinocytes. Within keratinocytes, melanin polarizes to the apical perinuclear region to form a protective cap, shielding the DNA from ultraviolet radiation‐induced damage. Previously, we found evidence to support the exocytosis by melanocytes of the melanin core, termed melanocore, followed by endo/phagocytosis by keratinocytes as a main form of transfer, with Rab11b playing a key role in the process. Here, we report the requirement for the exocyst tethering complex in melanocore exocytosis and transfer to keratinocytes. We observed that the silencing of the exocyst subunits Sec8 or Exo70 impairs melanocore exocytosis from melanocytes, without affecting melanin synthesis. Moreover, we confirmed by immunoprecipitation that Rab11b interacts with Sec8 in melanocytes. Furthermore, we found that the silencing of Sec8 or Exo70 in melanocytes impairs melanin transfer to keratinocytes. These results support our model as melanocore exocytosis from melanocytes is essential for melanin transfer to keratinocytes and skin pigmentation and suggest that the role of Rab11b in melanocore exocytosis is mediated by the exocyst.
Partial and some few cases of complete spontaneous regression have been observed in cutaneous melanoma patients but little is known about the molecular mechanisms involved. The Melanoblastoma‐bearing Libechov Minipig (MeLiM) is a suitable animal model to study the phenomenon of spontaneous regression because MeLiM pigs exhibit naturally occurring melanomas which regress completely 6 months after birth. In this study, we used suppression subtractive hybridization (SSH) to identify molecular determinants of melanoma regression within swine melanoma tissues and melanoma cell cultures. Several markers involved in cell‐adhesion, ‐communication, ‐motility, signal transduction, negative regulation of cell proliferation, transport and immune response were identified that correlated with melanoma regression whereas the main genes involved in melanin synthesis showed a strong downregulation. For the most differentially expressed genes, we validated the results obtained by SSH with qRT‐PCR and with immunohistochemistry for some of them (
Melanoma is a disease associated with a very high mutation burden and thus the possibility of a diverse range of oncogenic mechanisms that allow it to evade therapeutic interventions and the immune system. Here, we describe the characterization of a panel of 102 cell lines from metastatic melanomas (the NZM lines), including using whole‐exome and RNA sequencing to analyse genetic variants and gene expression changes in a subset of this panel. Lines possessing all major melanoma genotypes were identified, and hierarchical clustering of gene expression profiles revealed four broad subgroups of cell lines. Immunogenotyping identified a range of HLA haplotypes as well as expression of neoantigens and cancer–testis antigens in the lines. Together, these characteristics make the NZM panel a valuable resource for cell‐based, immunological and xenograft studies to better understand the diversity of melanoma biology and the responses of melanoma to therapeutic interventions.
RS‐4‐(4‐hydroxyphenyl)‐2‐butanol dạng racemic (rhododendrol; tên thương mại: Rhododenol [RD]), được sử dụng trong mỹ phẩm làm trắng da, đã gây bất ngờ ở Nhật Bản khi báo cáo gây ra bạch biến hoặc bệnh bạch tạng gọi là bạch biến do rhododendrol (RIL) sau khi sử dụng nhiều lần. Theo hiểu biết của chúng tôi, chưa có nghiên cứu nào điều tra cơ chế gây bệnh bạch biến do hóa chất trên quy mô toàn bộ bộ gen. Tại đây, chúng tôi thực hiện một nghiên cứu liên kết toàn bộ bộ gen (GWAS) trên 147 trường hợp và 112 đối chứng.