Physiological Reviews

  1522-1210

  0031-9333

  Mỹ

Cơ quản chủ quản:  AMER PHYSIOLOGICAL SOC , American Physiological Society

Lĩnh vực:
PhysiologyMolecular BiologyPhysiology (medical)Medicine (miscellaneous)

Phân tích ảnh hưởng

Thông tin về tạp chí

 

e American Physiological Society (APS) is a nonprofit devoted to fostering education, scientific research, and dissemination of information in the physiological sciences. The Society was founded in 1887 with 28 members. APS now has over 10,500 members. Most members have doctoral degrees in physiology and/or medicine (or other health professions). APS is governed by an elected Council consisting of a President, President-Elect, Past President, and nine Councillors. The National headquarters of the Society is based in Rockville, Maryland. APS is a member of the Federation of American Societies for Experimental Biology (FASEB), a coalition of 26 independent societies that plays an active role in lobbying for the interests of biomedical scientists.

Các bài báo tiêu biểu

Ghrelin, CCK, GLP-1, and PYY(3–36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB
Tập 97 Số 1 - Trang 411-463 - 2017
Robert E. Steinert, Christine Feinle‐Bisset, Lori Asarian, Michael Horowitz, Christoph Beglinger, Nori Geary
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3–36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3–36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3–36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Optimization and gaits in the locomotion of vertebrates
Tập 69 Số 4 - Trang 1199-1227 - 1989
R. McN. Alexander
Beta-adrenergic receptors: biochemical mechanisms of physiological regulation
Tập 64 Số 2 - Trang 661-743 - 1984
Gary L. Stiles, Marc G. Caron, Robert J. Lefkowitz
Cellular Mechanisms of Melatonin Action
Tập 78 Số 3 - Trang 687-721 - 1998
J. Vaněček
Vanecek, Jiri. Cellular Mechanisms of Melatonin Action. Physiol. Rev. 78: 687–721, 1998. — The pineal hormone melatonin is involved in photic regulations of various kinds, including adaptation to light intensity, daily changes of light and darkness, and seasonal changes of photoperiod lengths. The melatonin effects are mediated by the specific high-affinity receptors localized on plasma membrane and coupled to GTP-binding protein. Two different G proteins coupled to the melatonin receptors have been described, one sensitive to pertussis toxin and the other sensitive to cholera toxin. On the basis of the molecular structure, three subtypes of the melatonin receptors have been described: Mel1A, Mel1B, and Mel1C. The first two subtypes are found in mammals and may be distinguished pharmacologically using selective antagonists. Melatonin receptor regulates several second messengers: cAMP, cGMP, diacylglycerol, inositol trisphosphate, arachidonic acid, and intracellular Ca2+concentration ([Ca2+]i). In many cases, its effect is inhibitory and requires previous activation of the cell by a stimulatory agent. Melatonin inhibits cAMP accumulation in most of the cells examined, but the indole effects on other messengers have been often observed only in one type of the cells or tissue, until now. Melatonin also regulates the transcription factors, namely, phosphorylation of cAMP-responsive element binding protein and expression of c-Fos. Molecular mechanisms of the melatonin effects are not clear but may involve at least two parallel transduction pathways, one inhibiting adenylyl cyclase and the other regulating phospholipide metabolism and [Ca2+]i.
Cardiac Chamber Formation: Development, Genes, and Evolution
Tập 83 Số 4 - Trang 1223-1267 - 2003
Antoon F.M. Moorman, Vincent M. Christoffels
Moorman, Antoon F. M., and Vincent M. Christoffels. Cardiac Chamber Formation: Development, Genes, and Evolution. Physiol Rev 83: 1223-1267, 2003; 10.1152/physrev.00006.2003.—Concepts of cardiac development have greatly influenced the description of the formation of the four-chambered vertebrate heart. Traditionally, the embryonic tubular heart is considered to be a composite of serially arranged segments representing adult cardiac compartments. Conversion of such a serial arrangement into the parallel arrangement of the mammalian heart is difficult to understand. Logical integration of the development of the cardiac conduction system into the serial concept has remained puzzling as well. Therefore, the current description needed reconsideration, and we decided to evaluate the essentialities of cardiac design, its evolutionary and embryonic development, and the molecular pathways recruited to make the four-chambered mammalian heart. The three principal notions taken into consideration are as follows. 1) Both the ancestor chordate heart and the embryonic tubular heart of higher vertebrates consist of poorly developed and poorly coupled “pacemaker-like” cardiac muscle cells with the highest pacemaker activity at the venous pole, causing unidirectional peristaltic contraction waves. 2) From this heart tube, ventricular chambers differentiate ventrally and atrial chambers dorsally. The developing chambers display high proliferative activity and consist of structurally well-developed and well-coupled muscle cells with low pacemaker activity, which permits fast conduction of the impulse and efficacious contraction. The forming chambers remain flanked by slowly proliferating pacemaker-like myocardium that is temporally prevented from differentiating into chamber myocardium. 3) The trabecular myocardium proliferates slowly, consists of structurally poorly developed, but well-coupled, cells and contributes to the ventricular conduction system. The atrial and ventricular chambers of the formed heart are activated and interconnected by derivatives of embryonic myocardium. The topographical arrangement of the distinct cardiac muscle cells in the forming heart explains the embryonic electrocardiogram (ECG), does not require the invention of nodes, and allows a logical transition from a peristaltic tubular heart to a synchronously contracting four-chambered heart. This view on the development of cardiac design unfolds fascinating possibilities for future research.
Dual Role of Matrix Metalloproteinases (Matrixins) in Intimal Thickening and Atherosclerotic Plaque Rupture
Tập 85 Số 1 - Trang 1-31 - 2005
Andrew C. Newby
Intimal thickening, the accumulation of cells and extracellular matrix within the inner vessel wall, is a physiological response to mechanical injury, increased wall stress, or chemical insult (e.g., atherosclerosis). If excessive, it can lead to the obstruction of blood flow and tissue ischemia. Together with expansive or constrictive remodeling, the extent of intimal expansion determines final lumen size and vessel wall thickness. Plaque rupture represents a failure of intimal remodeling, where the fibrous cap overlying an atheromatous core of lipid undergoes catastrophic mechanical breakdown. Plaque rupture promotes coronary thrombosis and myocardial infarction, the most prevalent cause of premature death in advanced societies. The matrix metalloproteinases (MMPs) can act together to degrade the major components of the vascular extracellular matrix. All cells present in the normal and diseased blood vessel wall upregulate and activate MMPs in a multistep fashion driven in part by soluble cytokines and cell-cell interactions. Activation of MMP proforms requires other MMPs or other classes of protease. MMP activation contributes to intimal growth and vessel wall remodeling in response to injury, most notably by promoting migration of vascular smooth muscle cells. A broader spectrum and/or higher level of MMP activation, especially associated with inflammation, could contribute to pathological matrix destruction and plaque rupture. Inhibiting the activity of specific MMPs or preventing their upregulation could ameliorate intimal thickening and prevent myocardial infarction.
Astrocyte Reactivity and Reactive Astrogliosis: Costs and Benefits
Tập 94 Số 4 - Trang 1077-1098 - 2014
Milos Pekny, Marcela Pekna
Astrocytes are the most abundant cells in the central nervous system (CNS) that provide nutrients, recycle neurotransmitters, as well as fulfill a wide range of other homeostasis maintaining functions. During the past two decades, astrocytes emerged also as increasingly important regulators of neuronal functions including the generation of new nerve cells and structural as well as functional synapse remodeling. Reactive gliosis or reactive astrogliosis is a term coined for the morphological and functional changes seen in astroglial cells/astrocytes responding to CNS injury and other neurological diseases. Whereas this defensive reaction of astrocytes is conceivably aimed at handling the acute stress, limiting tissue damage, and restoring homeostasis, it may also inhibit adaptive neural plasticity mechanisms underlying recovery of function. Understanding the multifaceted roles of astrocytes in the healthy and diseased CNS will undoubtedly contribute to the development of treatment strategies that will, in a context-dependent manner and at appropriate time points, modulate reactive astrogliosis to promote brain repair and reduce the neurological impairment.
Molecular and cellular basis of immune protection of mucosal surfaces
Tập 72 Số 4 - Trang 853-879 - 1992
Jean-Pierre Kraehenbuhl, Marian R. Neutra
Physiology of Cell Volume Regulation in Vertebrates
Tập 89 Số 1 - Trang 193-277 - 2009
Else K. Hoffmann, Ian Henry Lambert, Stine F. Pedersen
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K+, Cl, and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na+/H+exchange, Na+-K+-2Clcotransport, and Na+channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca2+, protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.