Molecular Plant-Microbe Interactions
0894-0282
1943-7706
Mỹ
Cơ quản chủ quản: AMER PHYTOPATHOLOGICAL SOC , American Phytopathological Society
Các bài báo tiêu biểu
Recent molecular studies on endophytic bacterial diversity have revealed a large richness of species. Endophytes promote plant growth and yield, suppress pathogens, may help to remove contaminants, solubilize phosphate, or contribute assimilable nitrogen to plants. Some endophytes are seed-borne, but others have mechanisms to colonize the plants that are being studied. Bacterial mutants unable to produce secreted proteins are impaired in the colonization process. Plant genes expressed in the presence of endophytes provide clues as to the effects of endophytes in plants. Molecular analysis showed that plant defense responses limit bacterial populations inside plants. Some human pathogens, such as Salmonella spp., have been found as endophytes, and these bacteria are not removed by disinfection procedures that eliminate superficially occurring bacteria. Delivery of endo-phytes to the environment or agricultural fields should be carefully evaluated to avoid introducing pathogens.
Many gram-negative bacteria regulate expression of specialized gene sets in response to population density. This regulatory mechanism, called autoinduction or quorumsensing, is based on the production by the bacteria of a small, diffusible signal molecule called the autoinducer. In the most well-studied systems the autoinducers are N-acylated derivatives of l-homoserine lactone (acyl-HSL). Signal specificity is conferred by the length, and the nature of the substitution at C-3, of the acyl side-chain. We evaluated four acyl-HSL bioreporters, based on tra of Agrobacterium tumefaciens, lux of Vibrio fischeri, las of Pseudomonas aeruginosa, and pigment production by Chromobacterium violaceum, for their ability to detect sets of 3-oxo acyl-HSLs, 3-hydroxy acyl-HSLs, and alkanoyl-HSLs with chain lengths ranging from C4 to C12. The traG::lacZ fusion reporter from the A. tumefaciens Ti plasmid was the single most sensitive and versatile detector of the four. Using this reporter, we screened 106 isolates representing seven genera of bacteria that associate with plants. Most of the Agrobacterium, Rhizobium, and Pantoea isolates and about half of the Erwinia and Pseudomonas isolates gave positive reactions. Only a few isolates of Xanthomonas produced a detectable signal. We characterized the acyl-HSLs produced by a subset of the isolates by thin-layer chromatography. Among the pseudomonads and erwinias, most produced a single dominant activity chromatographing with the properties of N-(3-oxo-hexanoyl)-l-HSL. However, a few of the erwinias, and the P. fluorescens and Ralstonia solanacearum isolates, produced quite different signals, including 3-hydroxy forms, as well as active compounds that chromatographed with properties unlike any of our standards. The few positive xanthomonads, and almost all of the agrobacteria, produced small amounts of a compound with the chromatographic properties of N-(3-oxo-octanoyl)-l-HSL. Members of the genus Rhizobium showed the greatest diversity, with some producing as few as one and others producing as many as seven detectable signals. Several isolates produced extremely nonpolar compounds indicative of very long acyl side-chains. Production of these compounds suggests that quorum-sensing is common as a gene regulatory mechanism among gram-negative plant-associated bacteria.
Although 109 WRKY genes have been identified in the rice genome, the functions of most are unknown. Here, we show that OsWRKY13 plays a pivotal role in rice disease resistance. Overexpression of OsWRKY13 can enhance rice resistance to bacterial blight and fungal blast, two of the most devastating diseases of rice worldwide, at both the seedling and adult stages, and shows no influence on the fertility. This overexpression was accompanied by the activation of salicylic acid (SA) synthesis-related genes and SA-responsive genes and the suppression of jasmonic acid (JA) synthesis-related genes and JA-responsive genes. OsWRKY13 bound to the promoters of its own and at least three other genes in SA- and JA-dependent signaling pathways. Its DNA-binding activity was influenced by pathogen infection. These results suggest that OsWRKY13, as an activator of the SA-dependent pathway and a suppressor of JA-dependent pathways, mediates rice resistance by directly or indirectly regulating the expression of a subset of genes acting both upstream and downstream of SA and JA. Furthermore, OsWRKY13 will provide a transgenic tool for engineering wider-spectrum and whole-growth-stage resistance rice in breeding programs.
This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions.
Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.
Arabidopsis NPR1/NIM1 is a key regulator of systemic acquired resistance (SAR), which confers lasting broad-spectrum resistance. Previous reports indicate that rice has a disease-resistance pathway similar to the Arabidopsis SAR pathway. Here we report the isolation and characterization of a rice NPR1 homologue (NH1). Transgenic rice plants overexpressing NH1 (NH1ox) acquire high levels of resistance to Xanthomonas oryzae pv. oryzae. The resistance phenotype is heritable and correlates with the presence of the transgene and reduced bacterial growth. Northern analysis shows that NH1ox rice spontaneously activates defense genes, contrasting with NPR1-overexpressing Arabidopsis, where defense genes are not activated until induction. Wild-type NH1, but not a point mutant corresponding to npr1-1, interacts strongly with the rice transcription factor rTGA2.2 in yeast two-hybrid. Greenhouse-grown NH1ox plants develop lesion-mimic spots on leaves at preflowering stage although no other developmental effects are observed. However, when grown in growth chambers (GCs) under low light, NH1ox plants are dwarfed, indicating elevated sensitivity to light. The GC-grown NH1ox plants show much higher salicylic acid (SA) levels than the wild type, whereas greenhouse-grown NH1ox plants contain lower SA. These results indicate that NH1 may be involved in the regulation of SA in response to environmental changes.
The rice blast resistance (R) genes Pi2 and Piz-t confer broad-spectrum resistance against different sets of Magnaporthe grisea isolates. We first identified the Pi2 gene using a map-based cloning strategy. The Pi2 gene is a member of a gene cluster comprising nine gene members (named Nbs1-Pi2 to Nbs9-Pi2) and encodes a protein with a nucleotide-binding site and leucine-rich repeat (LRR) domain. Fine genetic mapping, molecular characterization of the Pi2 susceptible mutants, and complementation tests indicated that Nbs4-Pi2 is the Pi2 gene. The Piz-t gene, a Pi2 allele in the rice cultivar Toride 1, was isolated based on the Pi2 sequence information. Complementation tests confirmed that the family member Nbs4-Piz-t is Piz-t. Sequence comparison revealed that only eight amino-acid changes, which are confined within three consecutive LRR, differentiate Piz-t from Pi2. Of the eight variants, only one locates within the xxLxLxx motif. A reciprocal exchange of the single amino acid between Pi2 and Piz-t did not convert the resistance specificity to each other but, rather, abolished the function of both resistance proteins. These results indicate that the single amino acid in the xxLxLxx motif may be critical for maintaining the recognition surface of Pi2 and Piz-t to their respective avirulence proteins.
We used a variety of nitric oxide (NO) donors to demonstrate that NO inhibits the activities of tobacco catalase and ascorbate peroxidase (APX). This inhibition appears to be reversible because removal of the NO donor led to a significant recovery of enzymatic activity. In contrast, APX and catalase were irreversibly inhibited by peroxynitrite. The ability of NO and peroxynitrite to inhibit the two major H2O2-scavenging enzymes in plant cells suggests that NO may participate in redox signaling during the activation of defense responses following pathogen attack.
RNA interference is of value in determining gene function in many organisms. Plant parasitic nematodes are refractory to microinjection as a means of introducing RNA and do not show any oral uptake until they are within plants. We have used octopamine to stimulate uptake by prepara-sitic second stage juveniles of two cyst nematodes, Heterodera glycines and Globodera pallida. This new technique was used to facilitate uptake of double stranded RNA (dsRNA) together with fluoroscein isothiocyanate as a visual marker. Targeting cysteine proteinases did not reduce the number of parasites but caused a shift from the normal female/male ratio of 3:1 to 1:1 by 14 days postinfection (dpi). Exposure of H. glycines to dsRNA corresponding to a newly characterized protein with homology to C-type lectins did not affect sexual fate, but 41% fewer parasites were recovered from the plants. As expected, treatment with dsRNA corresponding to the major sperm protein (MSP) had no effect on either parasite development or sexual fate over 14 days. Northern analysis showed lower transcript abundance for the two targeted mRNAs that occur in J2, plus a later inhibition for MSP transcripts when males developed sperm at 15 dpi. These findings establish a procedure for RNAi of plant parasitic nematodes.