Microorganisms

  2076-2607

 

  Thụy Sĩ

Cơ quản chủ quản:  MDPI AG , MDPI

Lĩnh vực:
VirologyMicrobiology (medical)Microbiology

Phân tích ảnh hưởng

Thông tin về tạp chí

 

Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.

Các bài báo tiêu biểu

Detailed Molecular Interactions of Favipiravir with SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza Virus Polymerases In Silico
Tập 8 Số 10 - Trang 1610
Mitsuru Sada, Takeshi Saraya, Haruyuki Ishii, Kaori Okayama, Yuriko Hayashi, Takeshi Tsugawa, Atsuyoshi Nishina, Koichi Murakami, Makoto Kuroda, Akihide Ryo, Hirokazu Kimura
Favipiravir was initially developed as an antiviral drug against influenza and is currently used in clinical trials against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection (COVID-19). This agent is presumably involved in RNA chain termination during influenza virus replication, although the molecular interactions underlying its potential impact on the coronaviruses including SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) remain unclear. We performed in silico studies to elucidate detailed molecular interactions between favipiravir and the SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza virus RNA-dependent RNA polymerases (RdRp). As a result, no interactions between favipiravir ribofuranosyl-5′-triphosphate (F-RTP), the active form of favipiravir, and the active sites of RdRps (PB1 proteins) from influenza A (H1N1)pdm09 virus were found, yet the agent bound to the tunnel of the replication genome of PB1 protein leading to the inhibition of replicated RNA passage. In contrast, F-RTP bound to the active sites of coronavirus RdRp in the presence of the agent and RdRp. Further, the agent bound to the replicated RNA terminus in the presence of agent, magnesium ions, nucleotide triphosphate, and RdRp proteins. These results suggest that favipiravir exhibits distinct mechanisms of action against influenza virus and various coronaviruses.
Taking Advantage of Bacterial Adaptation in Order to Optimize Industrial Production of Dry Propionibacterium freudenreichii
Tập 7 Số 10 - Trang 477
Floriane Gaucher, Valérie Gagnaire, Hassan Rabah, Marie-Bernadette Maillard, Sylvie Bonnassié, Sandrine Pottier, Pierre Marchand, Gwénaël Jan, Philippe Blanc, Romain Jeantet
Propionibacterium freudenreichii is a beneficial bacterium, used both as a probiotic and as a cheese starter. Large-scale production of P. freudenreichii is required to meet growing consumers’ demand. Production, drying and storage must be optimized, in order to guarantee high P. freudenreichii viability within powders. Compared to freeze-drying, spray drying constitutes the most productive and efficient, yet the most stressful process, imposing severe oxidative and thermal constraints. The aim of our study was to provide the tools in order to optimize the industrial production of dry P. freudenreichii. Bacterial adaptation is a well-known protective mechanism and may be used to improve bacterial tolerance towards technological stresses. However, the choice of bacterial adaptation type must consider industrial constraints. In this study, we combined (i) modulation of the growth medium composition, (ii) heat-adaptation, and (iii) osmoadaptation, in order to increase P. freudenreichii tolerance towards technological stresses, including thermal and oxidative constraints, using an experimental design. We further investigated optimal growth and adaptation conditions, by monitoring intracellular compatible solutes accumulation. Glucose addition, coupled to heat-adaptation, triggered accumulation of trehalose and of glycine betaine, which further provided high tolerance towards spray drying and storage. This work opens new perspectives for high quality and fast production of live propionibacteria at the industrial scale.
Beneficial Propionibacteria within a Probiotic Emmental Cheese: Impact on Dextran Sodium Sulphate-Induced Colitis in Mice
Tập 8 Số 3 - Trang 380
Hassan Rabah, Fillipe Luiz Rosa Do Carmo, Rodrigo Dias de Oliveira Carvalho, Bárbara Fernandes Cordeiro, Sara Heloísa da Silva, Emiliano Rosa Oliveira, Álvaro Cantini Nunes, Denise Carmona Cara, Ana Maria Caetano Faria, Gilles Garric, Marielle Harel-Oger, Yves Le Loir, Vasco Azevedo, Guillaume Bouguen, Gwénaël Jan
Backgrounds and Aims. Inflammatory Bowel Diseases (IBD), including Ulcerative Colitis (UC), coincide with alterations in the gut microbiota. Consumption of immunomodulatory strains of probiotic bacteria may induce or prolong remission in UC patients. Fermented foods, including cheeses, constitute major vectors for bacteria consumption. New evidences revealed anti-inflammatory effects in selected strains of Propionibacterium freudenreichii. We thus hypothesized that consumption of a functional cheese, fermented by such a strain, may exert a positive effect on IBD. Methods. We investigated the impact of cheese fermented by P. freudenreichii on gut inflammation. We developed an experimental single-strain cheese solely fermented by a selected immunomodulatory strain of P. freudenreichii, CIRM-BIA 129. We moreover produced, in industrial conditions, an Emmental cheese using the same strain, in combination with Lactobacillus delbrueckii CNRZ327 and Streptococcus thermophilus LMD-9, as starters. Consumption of both cheeses was investigated with respect to prevention of Dextran Sodium Sulphate (DSS)-induced colitis in mice. Results. Consumption of the single-strain experimental cheese, or of the industrial Emmental, both fermented by P. freudenreichii CIRM-BIA 129, reduced severity of subsequent DSS-induced colitis, weight loss, disease activity index and histological score. Both treatments, in a preventive way, reduced small bowel Immunoglobulin A (IgA) secretion, restored occludin gene expression and prevented induction of Tumor Necrosis Factor α (TNFα), Interferon γ (IFNγ) and Interleukin-17 (IL-17). Conclusions. A combination of immunomodulatory strains of starter bacteria can be used to manufacture an anti-inflammatory cheese, as revealed in an animal model of colitis. This opens new perspectives for personalised nutrition in the context of IBD.
Dairy Propionibacteria: Versatile Probiotics
Tập 5 Số 2 - Trang 24
Hassan Rabah, Fillipe Luiz Rosa Do Carmo, Gwénaël Jan
Dairy propionibacteria are used as cheese ripening starters, as biopreservative and as beneficial additives, in the food industry. The main species, Propionibacterium freudenreichii, is known as GRAS (Generally Recognized As Safe, USA, FDA). In addition to another dairy species, Propionibacterium acidipropionici, they are included in QPS (Qualified Presumption of Safety) list. Additional to their well-known technological application, dairy propionibacteria increasingly attract attention for their promising probiotic properties. The purpose of this review is to summarize the probiotic characteristics of dairy propionibacteria reported by the updated literature. Indeed, they meet the selection criteria for probiotic bacteria, such as the ability to endure digestive stressing conditions and to adhere to intestinal epithelial cells. This is a prerequisite to bacterial persistence within the gut. The reported beneficial effects are ranked according to property’s type: microbiota modulation, immunomodulation, and cancer modulation. The proposed molecular mechanisms are discussed. Dairy propionibacteria are described as producers of nutraceuticals and beneficial metabolites that are responsible for their versatile probiotic attributes include short chain fatty acids (SCFAs), conjugated fatty acids, surface proteins, and 1,4-dihydroxy-2-naphtoic acid (DHNA). These metabolites possess beneficial properties and their production depends on the strain and on the growth medium. The choice of the fermented food matrix may thus determine the probiotic properties of the ingested product. This review approaches dairy propionibacteria, with an interest in both technological abilities and probiotic attributes.
Prevalence and Subtype Distribution of Blastocystis sp. in Senegalese School Children
Tập 8 Số 9 - Trang 1408
Salma M. Khaled, Nausicaa Gantois, Amadou T. Ly, Simon Senghor, Gaël Even, Ellena Dautel, Romane Dejager, Manasi Sawant, Martha Baydoun, Sadia Benamrouz-Vanneste, Magali Chabé, Seynabou Ndiaye, Anne‐Marie Schacht, Gabriela Certad, Gilles Riveau, Éric Viscogliosi
Blastocystis sp. is an enteric protozoan that frequently colonizes humans and many animals. Despite impacting on human health, data on the prevalence and subtype (ST) distribution of Blastocystis sp. remain sparse in Africa. Accordingly, we performed the first multicenter and largest epidemiological survey ever conducted on Blastocystis sp. for this continent. A total of 731 stool samples collected from healthy school children living in 10 villages of the northwestern region of Senegal were tested for the presence of Blastocystis sp. by real-time polymerase chain reaction followed by subtyping of positive samples. Considerable variation in prevalence between villages (51.7 to 100%) was evident with the overall prevalence being 80.4%. Mixed infections were identified in 23% of positive individuals. Among 453 school children with a single infection, ST2 was predominant, followed by ST1, ST3, ST7, ST10, and ST14; this is the first report of ST10 and ST14 in humans. Genetic polymorphisms were evident at the intra-ST level with the identification of numerous ST1 to ST3 genotypes. ST1 showed the greatest intra-ST diversity followed by ST2 and ST3. The prevalence and distribution of STs and genotypes varied among target villages, pointing to several potential infection sources, including human-to-human, zoonotic, and waterborne transmission.
Probiotic Effects of a Novel Strain, Acinetobacter KU011TH, on the Growth Performance, Immune Responses, and Resistance against Aeromonas hydrophila of Bighead Catfish (Clarias macrocephalus Günther, 1864)
Tập 7 Số 12 - Trang 613
Anurak Bunnoy, Uthairat Na‐Nakorn, Prapansak Srisapoome
In the present study, the novel probiotic strain Acinetobacter KU011TH with an evident lack of pathogenicity in catfish was experimented. Three practical administration routes, namely, feed additive (FD), water-soluble additive (SOL), and a combination route (FD+SOL), were applied in two sizes of catfish. After 120 days of FD+SOL administration, catfish fingerlings (15 g) exhibited a significant improvement in all tested growth performance parameters. For 15- and 30-day applications at the juvenile stage (150 g), phagocytic activity, phagocytic index, lysozyme activity, respiratory burst activity, alternative complement pathway, and bactericidal activity were significantly increased. Furthermore, probiotic-administered bighead catfish exhibited an upregulated expression of several immune-related genes in tested organs. Significant colonization by Acinetobacter KU011TH in rearing water and on skin and gills was observed among experimental groups. Histological analysis clearly indicated enhanced physical characteristics of skin mucosal immunity in the treated groups. No histopathological changes in the gills, skin, intestine or liver were observed among the fish groups. Interestingly, after challenge with Aeromonas hydrophila, the survival rates of the treated groups were significantly higher than those of the controls. In conclusion, the novel probiont Acinetobacter KU011TH provides a potent strategy for improvement in growth and disease resistance, which is an important steppingstone for sustaining catfish aquaculture.
Acinetobacter Strain KUO11TH, a Unique Organism Related to Acinetobacter pittii and Isolated from the Skin Mucus of Healthy Bighead Catfish and Its Efficacy Against Several Fish Pathogens
Tập 7 Số 11 - Trang 549
Bunnoy, Uthairat Na‐Nakorn, Pattanapon Kayansamruaj, Prapansak Srisapoome
The bacterial strain KU011TH was isolated from the skin mucus of healthy bighead catfish. The strain is a Gram-negative coccobacillus that is nonmotile, aerobic, catalase positive, oxidase negative, and nonhemolytic. Sequence analyses of the housekeeping genes 16S rRNA, gyrB and rpoB indicate that this strain is a new member of the Acb complex of the genus Acinetobacter and is closely related to Acinetobacter pittii and Acinetobacter lactucae. In addition, the genome relatedness-associated ANIb (<95–96%) and in silico DDH (<70%) values clearly supported the new member of the genus Acinetobacter and the Acb complex. The genome of the strain KU011TH was approximately 3.79 Mbp in size, comprising 3619 predicted genes, and the DNA G+C content was 38.56 mol%. The major cellular fatty acids were C18:1ω9c, C16:0, C16:1, C20:2, C18:2ω6c and C18:1ω9t. The whole-genome sequences and phenotypic, phylogenetic, and chemotaxonomic data clearly support the classification of the strain KU011TH as a new member in the genus Acinetobacter which is closest to A. pittii. Additionally, the new bacterial strain exhibited strong activity against a broad range of freshwater fish pathogens in vitro.
Genomic Features of MCR-1 and Extended-Spectrum β-Lactamase-Producing Enterobacterales from Retail Raw Chicken in Egypt
Tập 9 Số 1 - Trang 195
Mustafa Sadek, José Manuel Ortiz de la Rosa, Mohamed Abdelfattah Maky, Mohamed K. Dandrawy, Patrice Nordmann, Laurent Poirel
Colistin is considered as a last resort agent for treatment of severe infections caused by carbapenem-resistant Enterobacterales (CRE). Recently, plasmid-mediated colistin resistance genes (mcr type) have been reported, mainly corresponding to mcr-1 producers. Those mcr-1-positive Enterobacterales have been identified not only from human isolates, but also from food samples, from animal specimens and from environmental samples in various parts of the world. Our study focused on the occurrence and characterization of mcr-1-positive Enterobacterales recovered from retail raw chicken in Egypt. From the 345 retail chicken carcasses collected, a total of 20 samples allowed to recover mcr-1-positive isolates (Escherichia coli, n = 19; Citrobacter freundii, n = 1). No mcr-2- to mcr-10-positive isolate was identified from those samples. The colistin resistance trait was confirmed for all those 20 isolates with a positivity of the Rapid Polymyxin NP (Nordmann-Poirel) test. Minimum inhibitory concentrations (MICs) of colistin for all MCR-1-producing isolates ranged between 4 and 16 μg/mL. Noticeably, 9 out of the 20 mcr-1-positive isolates produced an extended-spectrum β-lactamase (ESBL), respectively producing CTX-M-9 (n = 2), CTX-M-14 (n = 4), CTX-M-15 (n = 2), and SHV-12 (n = 1). Noteworthy, the fosA4 gene encoding resistance to fosfomycin was found in a single mcr-1-positive E. coli isolate, in which both genes were located on different conjugative plasmids. The pulsed-field gel electrophoresis (PFGE) patterns were identified, corresponding to 10 different sequence types (STs), highlighting the genetic diversity of those different E. coli. Whole-genome sequencing revealed three major types of mcr-1-bearing plasmids, corresponding to IncI2, IncX4, and IncHI2 scaffolds. The occurrence of MCR-1-producing multidrug-resistant Enterobacterales in retail raw chicken is of great concern, considering the possibility of transmission to humans through the food chain.
Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges
Tập 8 Số 11 - Trang 1716
Ferdinando F. Andrade, Daniela Silva, Acácio G. Rodrigues, Cidália Pina‐Vaz
Colistin has been extensively used since the middle of the last century in animals, particularly in swine, for the control of enteric infections. Colistin is presently considered the last line of defense against human infections caused by multidrug-resistant Gram-negative organisms such as carbapenemase-producer Enterobacterales, Acinetobacter baumanni, and Pseudomonas aeruginosa. Transferable bacterial resistance like mcr-genes was reported in isolates from both humans and animals. Researchers actively seek strategies to reduce colistin resistance. The definition of guidelines for colistin therapy in veterinary and human medicine is thus crucial. The ban of colistin use in swine as a growth promoter and for prophylactic purposes, and the implementation of sustainable measures in farm animals for the prevention of infections, would help to avoid resistance and should be encouraged. Colistin resistance in the human–animal–environment interface stresses the relevance of the One Health approach to achieve its effective control. Such measures should be addressed in a cooperative way, with efforts from multiple disciplines and with consensus among doctors, veterinary surgeons, and environment professionals. A revision of the mechanism of colistin action, resistance, animal and human use, as well as colistin susceptibility evaluation is debated here.
Genomic Insights into a Colistin-Resistant Uropathogenic Escherichia coli Strain of O23:H4-ST641 Lineage Harboring mcr-1.1 on a Conjugative IncHI2 Plasmid from Egypt
Tập 9 Số 4 - Trang 799
Azza S. Zakaria, Eva A. Edward, Nelly M. Mohamed
The reintroduction of colistin, a last-resort antibiotic for multidrug-resistant pathogens, resulted in the global spread of plasmid-mediated mobile colistin resistance (mcr) genes. Our study investigated the occurrence of colistin resistance among Escherichia coli isolated from patients with urinary tract infections admitted to a teaching hospital in Egypt. Out of 67 isolates, three isolates were colistin-resistant, having a minimum inhibitory concentration of 4 µg/mL and possessing the mcr-1 gene. A double mechanism of colistin resistance was detected; production of mcr-1 along with amino acid substitution in PmrB (E123D and Y358N) and PmrA (G144S). Broth mating experiments inferred that mcr-1 was positioned on conjugative plasmids. Whole-genome sequencing of EC13049 indicated that the isolate belonged to O23:H4-ST641 lineage and to phylogroup D. The mcr-1-bearing plasmid corresponded to IncHI2 type with a notable similarity to other E. coli plasmids previously recovered from Egypt. The unbanned use of colistin in the Egyptian agriculture sector might have created a potential reservoir for the mcr-1 gene in food-producing animals that spread to humans. More proactive regulations must be implemented to prevent further dissemination of this resistance. This is the first characterization of mcr-1-carrying IncHI2:ST4 plasmid recovered from E. coli of a clinical source in Egypt.