SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra, India
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shang, 2020, Structural basis of receptor recognition by SARS-CoV-2, Nature, 581, 221, 10.1038/s41586-020-2179-y
Wan, 2020, Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus, J. Virol., 94, e00127-20, 10.1128/JVI.00127-20
Elbe, 2017, Data, disease and diplomacy: GISAID’s innovative contribution to global health, Glob. Chall., 1, 33, 10.1002/gch2.1018
Korber, 2020, Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus, Cell, 182, 812, 10.1016/j.cell.2020.06.043
Volz, 2021, Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity, Cell, 184, 64, 10.1016/j.cell.2020.11.020
World Health Organization (2021, June 12). Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
Leung, 2021, Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020, Eurosurveillance, 26, 2002106, 10.2807/1560-7917.ES.2020.26.1.2002106
Rambaut, 2020, A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology, Nat. Microbiol., 5, 1403, 10.1038/s41564-020-0770-5
Potdar, 2021, Phylogenetic classification of the whole-genome sequences of SARS-CoV-2 from India & evolutionary trends, Indian J. Med. Res., 153, 166, 10.4103/ijmr.IJMR_3418_20
Shepard, S.S., Meno, S., Bahl, J., Wilson, M.M., Barnes, J., and Neuhaus, E. (2016). Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genom., 17.
Yadav, 2020, Full-genome sequences of the first two SARS-CoV-2 viruses from India, Indian J. Med. Res., 151, 200, 10.4103/ijmr.IJMR_1029_20
Katoh, 2002, MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 30, 3059, 10.1093/nar/gkf436
Tamura, 2013, MEGA6: Molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30, 2725, 10.1093/molbev/mst197
Benton, 2020, Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion, Nature, 588, 327, 10.1038/s41586-020-2772-0
Wang, 2020, Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2, Cell, 181, 894, 10.1016/j.cell.2020.03.045
Hansen, 2020, Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science, Am. Assoc. Adv. Sci., 369, 1010
Ju, 2020, Human neutralizing antibodies elicited by SARS-CoV-2 infection, Nature, 584, 115, 10.1038/s41586-020-2380-z
Greaney, 2021, Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies, Cell Host Microbe., 29, 463, 10.1016/j.chom.2021.02.003
Lam, 2021, Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity, Cell, 184, 2372, 10.1016/j.cell.2021.03.013
Yadav, P.D., Nyayanit, D.A., Majumdar, T., Patil, S., Kaur, H., Gupta, N., Shete, A.M., Pandit, P., Kumar, A., and Aggarwal, N. (2021). An Epidemiological Analysis of SARS-CoV-2 Genomic Sequencesfrom Different Regions of India. Viruses, 13.
Sarkar, 2021, Comprehensive analysis of genomic diversity of SARS-CoV-2 in different geographic regions of India: An endeavour to classify Indian SARS-CoV-2 strains on the basis of co-existing mutations, Arch. Virol., 166, 801, 10.1007/s00705-020-04911-0
Zeng, 2020, Global analysis of more than 50,000 SARS-CoV-2 genomes reveals epistasis between eight viral genes, Proc. Natl. Acad. Sci. USA, 117, 31519, 10.1073/pnas.2012331117
England, P.H. (2021, June 14). SARS-CoV-2 Variants of Concern and Variants under Investigation in England Technical Briefing 10, Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/984274/Variants_of_Concern_VOC_Technical_Briefing_10_England.pdf.
Tada, T., Zhou, H., Dcosta, B.M., Samanovic, M.I., Mulligan, M.J., and Landau, N.R. (2021). The Spike Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. bioRxiv.
McCallum, M., Bassi, J., De Marco, A., Chen, A., Walls, A.C., Di Iulio, J., Tortorici, M.A., Navarro, M.-J., Silacci-Fregni, C., and Saliba, C. (2021). SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. bioRxiv.
Motozono, C., Toyoda, M., Zahradnik, J., Ikeda, T., Saito, A., Tan, T.S., Ngare, I., Nasser, H., Kimura, I., and Uriu, K. (2021). An emerging SARS-CoV-2 mutant evading cellular immunity and increasing viral infectivity. bioRxiv.
Yadav, P.D., Sapkal, G.N., Abraham, P., Ella, R., Deshpande, G., Patil, D.Y., Nyayanit, D.A., Gupta, N., Sahay, R.R., and Shete, A.M. (2021). Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. Clin. Infect. Dis., ciab411.
Yadav, P.D., Sapkal, G.N., Abraham, P., Deshpande, G., Nyayanit, D.A., Patil, D.Y., Gupta, N., Sahay, R.R., Shete, A.M., and Kumar, S. (2021). Neutralization potential of Covishield vaccinated individuals sera against B.1.617.1. Clin. Infect. Dis., ciab483.
Yadav, P.D., Sapkal, G.N., Ella, R., Sahay, R.R., Nyayanit, D.A., Patil, D.Y., Deshpande, G., Shete, A.M., Gupta, N., and Mohan, V.K. (2021). Neutralization against B.1.351 and B.1.617.2 with sera of COVID-19 recovered cases and vaccinees of BBV152. bioRxiv.
Bernal, J., Andrews, N., Gower, C., Gallagher, E., Simmons, S.S., and Thelwall, S. (2021). Effectiveness of COVID-19 vaccines against the B.1.617.2 variant. medRxiv.
Li, 2020, The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity, Cell, 182, 1284, 10.1016/j.cell.2020.07.012
Chen, J., Gao, K., Wang, R., and Wei, G.-W. (2021). Revealing the threat of emerging SARS-CoV-2 mutations to antibody therapies. bioRxiv.
Liu, 2021, Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization, Cell Host Microbe., 29, 477, 10.1016/j.chom.2021.01.014
Deng, 2021, Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant, Cell, 184, 3426, 10.1016/j.cell.2021.04.025
Tchesnokova, V., Kulakesara, H., Larson, L., Bowers, V., Rechkina, E., Kisiela, D., Sledneva, Y., Choudhury, D., Maslova, I., and Deng, K. (2021). Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-CoV-2 variants. bioRxiv.
Hoffmann, M., Hofmann-Winkler, H., Krüger, N., Kempf, A., Nehlmeier, I., Graichen, L., Sidarovich, A., Moldenhauer, A.-S., Winkler, M.S., and Schulz, S. (2021). SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination. bioRxiv.