Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis
Tóm tắt
Gut microbiota play an important role in maintaining intestinal health and are involved in the metabolism of carbohydrates, lipids, and amino acids. Recent studies have shown that the central nervous system (CNS) and enteric nervous system (ENS) can interact with gut microbiota to regulate nutrient metabolism. The vagal nerve system communicates between the CNS and ENS to control gastrointestinal tract functions and feeding behavior. Vagal afferent neurons also express receptors for gut peptides that are secreted from enteroendocrine cells (EECs), such as cholecystokinin (CCK), ghrelin, leptin, peptide tyrosine tyrosine (PYY), glucagon-like peptide-1 (GLP-1), and 5-hydroxytryptamine (5-HT; serotonin). Gut microbiota can regulate levels of these gut peptides to influence the vagal afferent pathway and thus regulate intestinal metabolism via the microbiota-gut-brain axis. In addition, bile acids, short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), and Immunoglobulin A (IgA) can also exert metabolic control through the microbiota-gut-liver axis. This review is mainly focused on the role of gut microbiota in neuroendocrine regulation of nutrient metabolism via the microbiota-gut-brain-liver axis.
Từ khóa
Tài liệu tham khảo
Boulange, 2016, Impact of the gut microbiota on inflammation, obesity, and metabolic disease, Genome Med., 8, 42, 10.1186/s13073-016-0303-2
Eckburg, 2005, Diversity of the human intestinal microbial flora, Science, 308, 1635, 10.1126/science.1110591
Fuller, 2014, The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state, Asia Pac. J. Clin. Nutr., 23, 360
Lozupone, 2012, Diversity, stability and resilience of the human gut microbiota, Nature, 489, 220, 10.1038/nature11550
Bibbo, 2016, The role of diet on gut microbiota composition, Eur. Rev. Med. Pharmacol. Sci., 20, 4742
Monda, 2017, Exercise modifies the gut microbiota with positive health effects, Oxidative Med. Cell. Longev., 2017, 3831972, 10.1155/2017/3831972
Guo, 2016, Intestinal microbiota distinguish gout patients from healthy humans, Sci. Rep., 6, 20602, 10.1038/srep20602
Leung, 2016, The role of the gut microbiota in NAFLD, Nat. Rev. Gastroenterol. Hepatol., 13, 412, 10.1038/nrgastro.2016.85
Tang, 2017, Gut microbiota in cardiovascular health and disease, Circ. Res., 120, 1183, 10.1161/CIRCRESAHA.117.309715
Morrison, 2016, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microbes, 7, 189, 10.1080/19490976.2015.1134082
Gudi, R., Suber, J., Brown, R., Johnson, B.M., and Vasu, C. (2019). Pretreatment with yeast-derived complex dietary polysaccharides suppresses gut inflammation, alters the microbiota composition, and increases immune regulatory short-chain fatty acid production in C57BL/6 Mice. J. Nutr., nxz328.
Schwarz, 2017, The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system, J. Investig. Dermatol., 137, 855, 10.1016/j.jid.2016.11.014
Cremon, 2018, Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: A pilot randomized clinical trial, United Eur. Gastroenterol. J., 6, 604, 10.1177/2050640617736478
Sivaprakasam, 2016, Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis, Pharmacol. Ther., 164, 144, 10.1016/j.pharmthera.2016.04.007
Furness, 2012, The enteric nervous system and neurogastroenterology, Nat. Rev. Gastroenterol. Hepatol., 9, 286, 10.1038/nrgastro.2012.32
Lasrado, 2017, Lineage-dependent spatial and functional organization of the mammalian enteric nervous system, Science, 356, 722, 10.1126/science.aam7511
Memic, 2016, Ascl1 is required for the development of specific neuronal subtypes in the enteric nervous system, J. Neurosci. Off. J. Soc. Neurosci., 36, 4339, 10.1523/JNEUROSCI.0202-16.2016
Furness, 2014, The enteric nervous system and gastrointestinal innervation: Integrated local and central control, Adv. Exp. Med. Biol., 817, 39, 10.1007/978-1-4939-0897-4_3
Konturek, 2003, Brain-gut axis in pancreatic secretion and appetite control, J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc., 54, 293
Grabauskas, 2017, Plasticity of vagal afferent signaling in the gut, Medicina, 53, 73, 10.1016/j.medici.2017.03.002
Lund, 2018, Enterochromaffin 5-HT cells—A major target for GLP-1 and gut microbial metabolites, Mol. Metab., 11, 70, 10.1016/j.molmet.2018.03.004
Bauer, 2016, Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota, Cell. Mol. Life Sci. CMLS, 73, 737, 10.1007/s00018-015-2083-z
Dockray, 2013, Enteroendocrine cell signalling via the vagus nerve, Curr. Opin. Pharmacol., 13, 954, 10.1016/j.coph.2013.09.007
Park, 2015, Association of obesity with serum leptin, adiponectin, and serotonin and gut microflora in beagle dogs, J. Vet. Intern. Med., 29, 43, 10.1111/jvim.12455
Obrenovich, 2017, Recent findings within the microbiota–gut–brain–endocrine metabolic interactome, Pathol. Lab. Med. Int., 9, 21, 10.2147/PLMI.S121487
Schellekens, 2017, The microbiota-gut-brain axis in obesity, Lancet. Gastroenterol. Hepatol., 2, 747, 10.1016/S2468-1253(17)30147-4
Bonaz, 2018, The vagus nerve at the interface of the microbiota-gut-brain axis, Front. Neurosci., 12, 49, 10.3389/fnins.2018.00049
Martin, 2018, The brain-gut-microbiome axis, Cell. Mol. Gastroenterol. Hepatol., 6, 133, 10.1016/j.jcmgh.2018.04.003
Brandl, 2017, Gut-liver axis at the frontier of host-microbial interactions, Am. J. Physiol. Gastrointest. Liver Physiol., 312, G413, 10.1152/ajpgi.00361.2016
Milosevic, I., Vujovic, A., Barac, A., Djelic, M., Korac, M., Radovanovic Spurnic, A., Gmizic, I., Stevanovic, O., Djordjevic, V., and Lekic, N. (2019). Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature. Int. J. Mol. Sci., 20.
Yadav, 2018, A review of metabolic potential of human gut microbiome in human nutrition, Arch. Microbiol., 200, 203, 10.1007/s00203-017-1459-x
Fava, 2013, The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population, Int. J. Obes., 37, 216, 10.1038/ijo.2012.33
Brinkworth, 2009, Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations, Br. J. Nutr., 101, 1493, 10.1017/S0007114508094658
Russell, 2011, High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health, Am. J. Clin. Nutr., 93, 1062, 10.3945/ajcn.110.002188
Collins, 2016, A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats, Sci. Rep., 6, 37278, 10.1038/srep37278
Mastrocola, 2018, Fructose liquid and solid formulations differently affect gut integrity, microbiota composition and related liver toxicity: A comparative in vivo study, J. Nutr. Biochem., 55, 185, 10.1016/j.jnutbio.2018.02.003
Llewellyn, 2018, Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice, Gastroenterology, 154, 1037, 10.1053/j.gastro.2017.11.030
Cummings, 1987, Fermentation in the human large intestine and the available substrates, Am. J. Clin. Nutr., 45, 1243, 10.1093/ajcn/45.5.1243
Ouwehand, 2005, Prebiotics and other microbial substrates for gut functionality, Curr. Opin. Biotechnol., 16, 212, 10.1016/j.copbio.2005.01.007
Gentile, 2018, The gut microbiota at the intersection of diet and human health, Science, 362, 776, 10.1126/science.aau5812
Dongowski, 2000, Degradation of pectins with different degrees of esterification by Bacteroides thetaiotaomicron isolated from human gut flora, Appl. Environ. Microbiol., 66, 1321, 10.1128/AEM.66.4.1321-1327.2000
Jensen, 1986, Bacteroides pectinophilus sp. nov. and Bacteroides galacturonicus sp. nov.: Two pectinolytic bacteria from the human intestinal tract, Appl. Environ. Microbiol., 52, 880, 10.1128/aem.52.4.880-887.1986
Khodaei, 2016, Digestibility and prebiotic properties of potato rhamnogalacturonan I polysaccharide and its galactose-rich oligosaccharides/oligomers, Carbohydr. Polym., 136, 1074, 10.1016/j.carbpol.2015.09.106
Hartemink, 2000, Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria, J. Agric. Food Chem., 48, 1644, 10.1021/jf990519i
Tingirikari, 2018, Microbiota-accessible pectic poly- and oligosaccharides in gut health, Food Funct., 9, 5059, 10.1039/C8FO01296B
Goncalves, 2014, Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits, Cell, 156, 84, 10.1016/j.cell.2013.12.016
Tan, 2014, The role of short-chain fatty acids in health and disease, Adv. Immunol., 121, 91, 10.1016/B978-0-12-800100-4.00003-9
Turnbaugh, 2006, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, 444, 1027, 10.1038/nature05414
Gibson, 2017, Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics, Nat. Rev. Gastroenterol. Hepatol., 14, 491, 10.1038/nrgastro.2017.75
Lee, 2018, Probiotics in human health and disease: From nutribiotics to pharmabiotics, J. Microbiol., 56, 773, 10.1007/s12275-018-8293-y
Williams, 2010, Probiotics, Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm., 67, 449, 10.2146/ajhp090168
Markowiak, P., and Slizewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9.
Singh, 2017, Influence of diet on the gut microbiome and implications for human health, J. Transl. Med., 15, 73, 10.1186/s12967-017-1175-y
Singh, 2013, Role of probiotics in health and disease: A review, JPMA J. Pak. Med Assoc., 63, 253
Holscher, 2017, Dietary fiber and prebiotics and the gastrointestinal microbiota, Gut Microbes, 8, 172, 10.1080/19490976.2017.1290756
Gibson, 1995, Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics, J. Nutr., 125, 1401, 10.1093/jn/125.6.1401
Sarao, 2017, Probiotics, prebiotics, and microencapsulation: A review, Crit. Rev. Food Sci. Nutr., 57, 344, 10.1080/10408398.2014.887055
Schrezenmeir, 2001, Probiotics, prebiotics, and synbiotics—Approaching a definition, Am. J. Clin. Nutr., 73, 361S, 10.1093/ajcn/73.2.361s
Ley, 2005, Obesity alters gut microbial ecology, Proc. Natl. Acad. Sci. USA, 102, 11070, 10.1073/pnas.0504978102
Indiani, 2018, Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: A systematic review, Child. Obes., 14, 501, 10.1089/chi.2018.0040
Han, H., Li, Y., Fang, J., Liu, G., Yin, J., Li, T., and Yin, Y. (2018). Gut microbiota and type 1 diabetes. Int. J. Mol. Sci., 19.
Murri, M., Leiva, I., Gomez-Zumaquero, J.M., Tinahones, F.J., Cardona, F., Soriguer, F., and Queipo-Ortuno, M.I. (2013). Gut microbiota in children with type 1 diabetes differs from that in healthy children: A case-control study. BMC Med., 11.
Qin, 2012, A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, 490, 55, 10.1038/nature11450
Just, 2018, The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism, Microbiome, 6, 134, 10.1186/s40168-018-0510-8
Lang, 2018, Impact of individual traits, saturated fat, and protein source on the gut microbiome, mBio, 9, e01604-18, 10.1128/mBio.01604-18
Abulizi, N., Quin, C., Brown, K., Chan, Y.K., Gill, S.K., and Gibson, D.L. (2019). Gut mucosal proteins and bacteriome are shaped by the saturation index of dietary lipids. Nutrients, 11.
Shen, 2014, Intestinal and systemic inflammatory responses are positively associated with sulfidogenic bacteria abundance in high-fat-fed male C57BL/6J mice, J. Nutr., 144, 1181, 10.3945/jn.114.194332
Muralidharan, 2019, Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation, Front. Nutr., 6, 157, 10.3389/fnut.2019.00157
Patrone, V., Minuti, A., Lizier, M., Miragoli, F., Lucchini, F., Trevisi, E., Rossi, F., and Callegari, M.L. (2018). Differential effects of coconut versus soy oil on gut microbiota composition and predicted metabolic function in adult mice. BMC Genom., 19.
Bailey, 2018, Microbiome-mediated effects of the mediterranean diet on inflammation, Adv. Nutr., 9, 193, 10.1093/advances/nmy013
Mani, 2013, Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia, Nutr. Metab., 10, 6, 10.1186/1743-7075-10-6
Wang, 2016, Gut microbiome and lipid metabolism: From associations to mechanisms, Curr. Opin. Lipidol., 27, 216, 10.1097/MOL.0000000000000308
Backhed, 2004, The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. USA, 101, 15718, 10.1073/pnas.0407076101
Festi, 2014, Gut microbiota and metabolic syndrome, World J. Gastroenterol., 20, 16079, 10.3748/wjg.v20.i43.16079
Fu, 2015, The gut microbiome contributes to a substantial proportion of the variation in blood lipids, Circ. Res., 117, 817, 10.1161/CIRCRESAHA.115.306807
Jonsson, 2017, Role of gut microbiota in atherosclerosis, Nat. Rev. Cardiol., 14, 79, 10.1038/nrcardio.2016.183
Aleman, 2018, Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women, J. Transl. Med., 16, 244, 10.1186/s12967-018-1619-z
Duparc, 2017, Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism, Gut, 66, 620, 10.1136/gutjnl-2015-310904
Sanchez, 2019, Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia, Sci. Rep., 9, 1772, 10.1038/s41598-019-38874-3
Pathak, 2018, Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism, Hepatology, 68, 1574, 10.1002/hep.29857
Vitek, 2016, The role of bile acids in metabolic regulation, J. Endocrinol., 228, R85, 10.1530/JOE-15-0469
Baars, 2018, Sex differences in lipid metabolism are affected by presence of the gut microbiota, Sci. Rep., 8, 13426, 10.1038/s41598-018-31695-w
Ma, 2017, Contributions of the interaction between dietary protein and gut microbiota to intestinal health, Curr. Protein Pept. Sci., 18, 795, 10.2174/1389203718666170216153505
Mu, 2017, Temporal microbiota changes of high-protein diet intake in a rat model, Anaerobe, 47, 218, 10.1016/j.anaerobe.2017.06.003
Li, 2017, Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions, mBio, 8, e01703-16, 10.1128/mBio.01703-16
An, 2014, Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal, Appl. Microbiol. Biotechnol., 98, 2779, 10.1007/s00253-013-5271-5
Sun, 2015, Dietary L-leucine supplementation enhances intestinal development in suckling piglets, Amino Acids, 47, 1517, 10.1007/s00726-015-1985-2
Zhou, 2018, Regulation of intestinal health by branched-chain amino acids, Anim. Sci. J. = Nihon Chikusan Gakkaiho, 89, 3
Yang, 2016, Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice, Amino Acids, 48, 2731, 10.1007/s00726-016-2308-y
Agus, 2018, Gut microbiota regulation of tryptophan metabolism in health and disease, Cell Host Microbe, 23, 716, 10.1016/j.chom.2018.05.003
Yin, 2017, Lysine restriction affects feed intake and amino acid metabolism via gut microbiome in piglets, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol., 44, 1749, 10.1159/000485782
Lin, 2017, A review of the relationship between the gut microbiota and amino acid metabolism, Amino Acids, 49, 2083, 10.1007/s00726-017-2493-3
Dai, 2011, Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health, Front. Biosci., 16, 1768, 10.2741/3820
Deguchi, 1978, Incorporation of 15N administered to germfree and SPF piglets as 15N-urea into amino acids of hydrolyzed liver and muscle proteins, Jpn. J. Vet. Res., 26, 68
Torrallardona, 2003, Pigs’ gastrointestinal microflora provide them with essential amino acids, J. Nutr., 133, 1127, 10.1093/jn/133.4.1127
Mardinoglu, 2015, The gut microbiota modulates host amino acid and glutathione metabolism in mice, Mol. Syst. Biol., 11, 834, 10.15252/msb.20156487
Furness, 2000, Types of neurons in the enteric nervous system, J. Auton. Nerv. Syst., 81, 87, 10.1016/S0165-1838(00)00127-2
Lee, 2014, Gut microbiota-generated metabolites in animal health and disease, Nat. Chem. Biol., 10, 416, 10.1038/nchembio.1535
Tremaroli, 2012, Functional interactions between the gut microbiota and host metabolism, Nature, 489, 242, 10.1038/nature11552
Collins, 2014, Intestinal microbiota influence the early postnatal development of the enteric nervous system, Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc., 26, 98, 10.1111/nmo.12236
Anitha, 2012, Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling, Gastroenterology, 143, 1006, 10.1053/j.gastro.2012.06.034
Obata, 2016, The Effect of microbiota and the immune system on the development and organization of the enteric nervous system, Gastroenterology, 151, 836, 10.1053/j.gastro.2016.07.044
Brun, 2013, Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system, Gastroenterology, 145, 1323, 10.1053/j.gastro.2013.08.047
Lach, 2018, Anxiety, depression, and the microbiome: A role for gut peptides, Neurother. J. Am. Soc. Exp. Neurother., 15, 36
Zhang, 2019, Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., 33, 7126
Federico, 2016, Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: effect of bariatric surgery, In Vivo, 30, 321
Ge, 2018, Intestinal crosstalk between microbiota and serotonin and its impact on gut motility, Curr. Pharm. Biotechnol., 19, 190, 10.2174/1389201019666180528094202
Li, 2000, Serotonin released from intestinal enterochromaffin cells mediates luminal non-cholecystokinin-stimulated pancreatic secretion in rats, Gastroenterology, 118, 1197, 10.1016/S0016-5085(00)70373-8
Goswami, 2018, Short-chain fatty acids suppress food intake by activating vagal afferent neurons, J. Nutr. Biochem., 57, 130, 10.1016/j.jnutbio.2018.03.009
Raybould, 2015, Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons, Physiol. Behav., 139, 188, 10.1016/j.physbeh.2014.10.032
Saad, 2016, Linking gut microbiota and inflammation to obesity and insulin resistance, Physiology, 31, 283, 10.1152/physiol.00041.2015
Zyoud, S.H., Smale, S., Waring, W.S., Sweileh, W.M., and Al-Jabi, S.W. (2019). Global research trends in microbiome-gut-brain axis during 2009–2018: A bibliometric and visualized study. BMC Gastroenterol., 19.
Sudo, 2004, Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice, J. Physiol., 558, 263, 10.1113/jphysiol.2004.063388
Vuong, 2017, The microbiome and host behavior, Annu. Rev. Neurosci., 40, 21, 10.1146/annurev-neuro-072116-031347
Liang, 2018, Gut-brain psychology: rethinking psychology from the microbiota-gut-brain axis, Front. Integr. Neurosci., 12, 33, 10.3389/fnint.2018.00033
Luczynski, 2016, Growing up in a bubble: Using germ-free animals to assess the influence of the gut microbiota on brain and behavior, Int. J. Neuropsychopharmacol., 19, pyw020, 10.1093/ijnp/pyw020
Toni, 2004, The neuroendocrine system: Organization and homeostatic role, J. Endocrinol. Investig., 27, 35
Smith, 2006, The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress, Dialogues Clin. Neurosci., 8, 383, 10.31887/DCNS.2006.8.4/ssmith
Sternini, 2008, Enteroendocrine cells: A site of ‘taste’ in gastrointestinal chemosensing, Curr. Opin. Endocrinol. DiabetesObes., 15, 73, 10.1097/MED.0b013e3282f43a73
Latorre, 2016, Enteroendocrine cells: A review of their role in brain-gut communication, Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc., 28, 620, 10.1111/nmo.12754
Gribble, 2019, Function and mechanisms of enteroendocrine cells and gut hormones in metabolism, Nat. Rev. Endocrinol., 15, 226, 10.1038/s41574-019-0168-8
Ulven, 2012, Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets, Front. Endocrinol., 3, 111, 10.3389/fendo.2012.00111
Christiansen, 2018, The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon, Am. J. Physiol. Gastrointest. Liver Physiol., 315, G53, 10.1152/ajpgi.00346.2017
Nohr, 2013, GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes, Endocrinology, 154, 3552, 10.1210/en.2013-1142
Chiang, 2017, Intestinal farnesoid x receptor and takeda G protein couple receptor 5 signaling in metabolic regulation, Dig. Dis., 35, 241, 10.1159/000450981
Katsuma, 2005, Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1, Biochem. Biophys. Res. Commun., 329, 386, 10.1016/j.bbrc.2005.01.139
Thomas, 2009, TGR5-mediated bile acid sensing controls glucose homeostasis, Cell Metab., 10, 167, 10.1016/j.cmet.2009.08.001
Wu, 2013, Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans, Diabetes Obes. Metab., 15, 474, 10.1111/dom.12043
Abreu, 2005, TLR signaling in the gut in health and disease, J. Immunol., 174, 4453, 10.4049/jimmunol.174.8.4453
Gershon, 2013, 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract, Curr. Opin. Endocrinol. Diabetes Obes., 20, 14, 10.1097/MED.0b013e32835bc703
Mawe, 2013, Serotonin signalling in the gut—Functions, dysfunctions and therapeutic targets, Nat. Rev. Gastroenterol. Hepatol., 10, 473, 10.1038/nrgastro.2013.105
Bellono, 2017, Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways, Cell, 170, 185, 10.1016/j.cell.2017.05.034
Wikoff, 2009, Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites, Proc. Natl. Acad. Sci. USA, 106, 3698, 10.1073/pnas.0812874106
Ge, 2017, Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility, J. Transl. Med., 15, 13, 10.1186/s12967-016-1105-4
Reigstad, 2015, Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., 29, 1395
Yano, 2015, Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis, Cell, 161, 264, 10.1016/j.cell.2015.02.047
Hosoi, 2005, Novel pathway for LPS-induced afferent vagus nerve activation: Possible role of nodose ganglion, Auton. Neurosci. Basic Clin., 120, 104, 10.1016/j.autneu.2004.11.012
Lal, 2001, Vagal afferent responses to fatty acids of different chain length in the rat, Am. J. Physiol. Gastrointest. Liver Physiol., 281, G907, 10.1152/ajpgi.2001.281.4.G907
Goehler, 2005, Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni, Brain Behav. Immun., 19, 334, 10.1016/j.bbi.2004.09.002
Jaglin, 2018, Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats, Front. Neurosci., 12, 216, 10.3389/fnins.2018.00216
Mao, 2013, Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons, Nat. Commun., 4, 1465, 10.1038/ncomms2478
Strandwitz, 2018, Neurotransmitter modulation by the gut microbiota, Brain Res., 1693, 128, 10.1016/j.brainres.2018.03.015
Chelakkot, 2018, Mechanisms regulating intestinal barrier integrity and its pathological implications, Exp. Mol. Med., 50, 103, 10.1038/s12276-018-0126-x
Hayes, 2018, Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis, Sci. Rep., 8, 14184, 10.1038/s41598-018-32366-6
Logsdon, 2018, Gut reactions: How the blood-brain barrier connects the microbiome and the brain, Exp. Biol. Med., 243, 159, 10.1177/1535370217743766
Braniste, 2014, The gut microbiota influences blood-brain barrier permeability in mice, Sci. Transl. Med., 6, 263ra158, 10.1126/scitranslmed.3009759
Chen, 2017, Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model, Food Funct., 8, 1166, 10.1039/C6FO01532H
Mayer, 2014, Brain-gut microbiome interactions and functional bowel disorders, Gastroenterology, 146, 1500, 10.1053/j.gastro.2014.02.037
Santos, 1998, Release of mast cell mediators into the jejunum by cold pain stress in humans, Gastroenterology, 114, 640, 10.1016/S0016-5085(98)70577-3
Saunders, 2002, Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH, Dig. Dis. Sci., 47, 208, 10.1023/A:1013204612762
Wehrwein, 2016, Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system, Compr. Physiol., 6, 1239, 10.1002/cphy.c150037
Macfarlane, 2007, Microbial biofilms in the human gastrointestinal tract, J. Appl. Microbiol., 102, 1187, 10.1111/j.1365-2672.2007.03287.x
Takahashi, 2012, Mechanism of interdigestive migrating motor complex, J. Neurogastroenterol. Motil., 18, 246, 10.5056/jnm.2012.18.3.246
Akkermans, 2003, Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis, Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc., 15, 267, 10.1046/j.1365-2982.2003.00410.x
Santos, 2001, Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat, Gut, 48, 630, 10.1136/gut.48.5.630
Tripathi, 2018, The gut-liver axis and the intersection with the microbiome, Nat. Rev. Gastroenterol. Hepatol., 15, 397, 10.1038/s41575-018-0011-z
Chiang, 2018, Bile acid metabolism in liver pathobiology, Gene Expr., 18, 71, 10.3727/105221618X15156018385515
Kim, 2018, Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis, Lab. Anim. Res., 34, 140, 10.5625/lar.2018.34.4.140
Tailleux, 2017, Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease, Gastroenterology, 152, 1679, 10.1053/j.gastro.2017.01.055
Jadhav, 2018, Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR, Mol. Metab., 9, 131, 10.1016/j.molmet.2018.01.005
Monaghan, 2019, Effective fecal microbiota transplantation for recurrent Clostridioides difficile infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway, Gut Microbes, 10, 142, 10.1080/19490976.2018.1506667
Piglionica, 2018, The gut-liver axis in hepatocarcinoma: A focus on the nuclear receptor FXR and the enterokine FGF19, Curr. Opin. Pharmacol., 43, 93, 10.1016/j.coph.2018.08.005
Klag, 2018, β-Defensin 1 Is prominent in the liver and induced during cholestasis by bilirubin and bile acids via farnesoid X receptor and constitutive androstane receptor, Front. Immunol., 9, 1735, 10.3389/fimmu.2018.01735
Lajczak, 2017, Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human beta-defensin-1 and -2 secretion by colonic epithelial cells, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., 31, 3848
Long, 2017, Interactions between gut bacteria and bile in health and disease, Mol. Asp. Med., 56, 54, 10.1016/j.mam.2017.06.002
Lin, 2019, Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model, J. Agric. Food Chem., 67, 3624, 10.1021/acs.jafc.9b00249
2017, The role of the gut microbiota in bile acid metabolism, Ann. Hepatol., 16, s15
Vicario, 2015, The intestinal barrier function and its involvement in digestive disease, Rev. Esp. Enferm. Dig., 107, 686
Konturek, 2018, Gut-liver axis: How intestinal bacteria affect the liver, MMW Fortschr. Der Med., 160, 11, 10.1007/s15006-018-1051-6
Schonfeld, 2016, Short- and medium-chain fatty acids in energy metabolism: The cellular perspective, J. Lipid Res., 57, 943, 10.1194/jlr.R067629
He, 2019, Profiling of polar metabolites in mouse feces using four analytical platforms to study the effects of cathelicidin-related antimicrobial peptide in alcoholic liver disease, J. Proteome Res., 18, 2875, 10.1021/acs.jproteome.9b00181
Rau, 2018, Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease, U. Eur. Gastroenterol. J., 6, 1496, 10.1177/2050640618804444
Bennett, 2013, Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation, Cell Metab., 17, 49, 10.1016/j.cmet.2012.12.011
Tang, 2014, The contributory role of gut microbiota in cardiovascular disease, J. Clin. Investig., 124, 4204, 10.1172/JCI72331
Wang, 2011, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease, Nature, 472, 57, 10.1038/nature09922
Org, 2017, Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort, Genome Biol., 18, 70, 10.1186/s13059-017-1194-2
Canyelles, M., Tondo, M., Cedo, L., Farras, M., Escola-Gil, J.C., and Blanco-Vaca, F. (2018). Trimethylamine N-Oxide: A link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int. J. Mol. Sci., 19.
Bielinska, 2018, High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats, Nutrition, 54, 33, 10.1016/j.nut.2018.03.004
Chen, 2016, Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults, Sci. Rep., 6, 19076, 10.1038/srep19076
Oellgaard, 2017, Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer, Curr. Pharm. Des., 23, 3699, 10.2174/1381612823666170622095324
Xiong, 2015, Regulation of intestinal IgA responses, Cell. Mol. Life Sci. CMLS, 72, 2645, 10.1007/s00018-015-1892-4
Kugadas, 2017, Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA, Investig. Ophthalmol. Vis. Sci., 58, 4593, 10.1167/iovs.17-22119
Nakajima, 2018, IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria, J. Exp. Med., 215, 2019, 10.1084/jem.20180427