Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How?

Microorganisms - Tập 6 Số 3 - Trang 75
Sharon Y. Geerlings1, Ioannis Kostopoulos1, Willem M. de Vos2,1, Clara Belzer1
1Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
2Immunobiology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland

Tóm tắt

Akkermansia muciniphila is a mucin-degrading bacterium of the phylum Verrucomicrobia. Its abundance in the human intestinal tract is inversely correlated to several disease states. A. muciniphila resides in the mucus layer of the large intestine, where it is involved in maintaining intestinal integrity. We explore the presence of Akkermansia-like spp. based on its 16S rRNA sequence and metagenomic signatures in the human body so as to understand its colonization pattern in time and space. A. muciniphila signatures were detected in colonic samples as early as a few weeks after birth and likely could be maintained throughout life. The sites where Akkermansia-like sequences (including Verrucomicrobia phylum and/or Akkermansia spp. sequences found in the literature) were detected apart from the colon included human milk, the oral cavity, the pancreas, the biliary system, the small intestine, and the appendix. The function of Akkermansia-like spp. in these sites may differ from that in the mucosal layer of the colon. A. muciniphila present in the appendix or in human milk could play a role in the re-colonization of the colon or breast-fed infants, respectively. In conclusion, even though A. muciniphila is most abundantly present in the colon, the presence of Akkermansia-like spp. along the digestive tract indicates that this bacterium might have more functions than those currently known.

Từ khóa


Tài liệu tham khảo

Blaser, 2014, The microbiome revolution, J. Clin. Investig., 124, 4162, 10.1172/JCI78366

Verdu, 2015, Novel players in coeliac disease pathogenesis: Role of the gut microbiota, Nat. Rev. Gastroenterol. Hepatol., 12, 497, 10.1038/nrgastro.2015.90

Distrutti, 2016, Gut microbiota role in irritable bowel syndrome: New therapeutic strategies, World J. Gastroenterol., 22, 2219, 10.3748/wjg.v22.i7.2219

Busquets, 2014, Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish Irritable Bowel Syndrome and Inflammatory Bowel Disease phenotypes, Int. J. Med. Microbiol., 304, 464, 10.1016/j.ijmm.2014.02.009

Sheehan, 2015, The microbiota in inflammatory bowel disease, J. Gastroenterol., 50, 495, 10.1007/s00535-015-1064-1

Png, 2010, Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria, Am. J. Gastroenterol., 105, 2420, 10.1038/ajg.2010.281

Shanahan, 2013, Phylogenetic analysis of dysbiosis in ulcerative colitis during remission, Inflamm. Bowel. Dis., 19, 481, 10.1097/MIB.0b013e31827fec6d

Zhang, X., Shen, D., Fang, Z., Jie, Z., Qiu, X., Zhang, C., Chen, Y., and Ji, L. (2013). Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE, 8.

Schneeberger, 2015, Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice, Sci. Rep., 5, 16643, 10.1038/srep16643

Everard, 2013, Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. USA, 110, 9066, 10.1073/pnas.1219451110

Derrien, 2004, Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium, Int. J. Syst. Evolut. Microbiol., 54, 1469, 10.1099/ijs.0.02873-0

Van Passel, M.W., Kant, R., Zoetendal, E.G., Plugge, C.M., Derrien, M., Malfatti, S.A., Chain, P.S., Woyke, T., Palva, A., and de Vos, W.M. (2011). The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE, 6.

2017, Microbe Profile: Akkermansia muciniphila: A conserved intestinal symbiont that acts as the gatekeeper of our mucosa, Microbiology, 163, 646, 10.1099/mic.0.000444

Swidsinski, 2011, Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum, Gut, 60, 34, 10.1136/gut.2009.191320

Karlsson, 2012, The microbiota of the gut in preschool children with normal and excessive body weight, Obesity, 20, 2257, 10.1038/oby.2012.110

Dao, 2015, Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology, Gut, 65, 426, 10.1136/gutjnl-2014-308778

Korpela, 2016, Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children, Nat. Commun., 7, 10410, 10.1038/ncomms10410

Clarke, 2014, Exercise and associated dietary extremes impact on gut microbial diversity, Gut, 63, 1913, 10.1136/gutjnl-2013-306541

Barton, 2018, The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level, Gut, 67, 625

Derrien, 2011, Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila, Front. Microbiol., 2, 166, 10.3389/fmicb.2011.00166

Lukovac, 2014, Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids, mBio, 5, e01438-14, 10.1128/mBio.01438-14

Desai, 2016, A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility, Cell, 167, 1339, 10.1016/j.cell.2016.10.043

Makki, 2018, The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease, Cell Host Microbe, 23, 705, 10.1016/j.chom.2018.05.012

Reunanen, 2015, Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer, Appl. Environ. Microbiol., 81, 3655, 10.1128/AEM.04050-14

Ottman, 2016, Characterization of Outer Membrane Proteome of Akkermansia muciniphila Reveals Sets of Novel Proteins Exposed to the Human Intestine, Front. Microbiol., 7, 1157, 10.3389/fmicb.2016.01157

Ottman, N., Reunanen, J., Meijerink, M., Pietila, T.E., Kainulainen, V., Klievink, J., Huuskonen, L., Aalvink, S., Skurnik, M., and Boeren, S. (2017). Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE, 12.

Collado, 2007, Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly, Appl. Environ. Microbiol., 73, 7767, 10.1128/AEM.01477-07

Derrien, 2008, The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract, Appl. Environ. Microbiol., 74, 1646, 10.1128/AEM.01226-07

Grzeskowiak, 2012, The impact of perinatal probiotic intervention on gut microbiota: Double-blind placebo-controlled trials in Finland and Germany, Anaerobe, 18, 7, 10.1016/j.anaerobe.2011.09.006

Grzeskowiak, 2012, Distinct gut microbiota in southeastern African and northern European infants, J. Pediatr. Gastroenterol. Nutr., 54, 812, 10.1097/MPG.0b013e318249039c

De Weerth, C., Fuentes, S., Puylaert, P., and de Vos, W.M. (2013). Intestinal microbiota of infants with colic: Development and specific signatures. Pediatrics, Available online: http://pediatrics.aappublications.org/content/early/2013/01/08/peds.2012-1449.short.

Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkila, J., Monti, D., Satokari, R., and Franceschi, C. (2010). Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE, 5.

Biagi, 2016, Gut Microbiota and Extreme Longevity, Curr. Biol., 26, 1480, 10.1016/j.cub.2016.04.016

Momozawa, Y., Deffontaine, V., Louis, E., and Medrano, J.F. (2011). Characterization of bacteria in biopsies of colon and stools by high throughput sequencing of the V2 region of bacterial 16S rRNA gene in human. PLoS ONE, 6.

Li, 2014, An integrated catalog of reference genes in the human gut microbiome, Nat. Biotechnol., 32, 834, 10.1038/nbt.2942

Smits, 2017, Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania, Science, 357, 802, 10.1126/science.aan4834

Costea, 2017, Towards standards for human fecal sample processing in metagenomic studies, Nat. Biotechnol., 35, 1069, 10.1038/nbt.3960

Guo, 2016, Different subtype strains of Akkermansia muciniphila abundantly colonize in southern China, J. Appl. Microbiol., 120, 452, 10.1111/jam.13022

Guo, X., Li, S., Zhang, J., Wu, F., Li, X., Wu, D., Zhang, M., Ou, Z., Jie, Z., and Yan, Q. (2017). Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genom., 18.

Ouwerkerk, 2016, Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces, Int. J. Syst. Evolut. Microbiol., 66, 4614, 10.1099/ijsem.0.001399

Ouwerkerk, 2017, Complete Genome Sequence of Akkermansia glycaniphila Strain PytT, a Mucin-Degrading Specialist of the Reticulated Python Gut, Genome Announc., 5, e01098-16, 10.1128/genomeA.01098-16

Ludwig, 2004, ARB: A software environment for sequence data, Nucleic Acids Res., 32, 1363, 10.1093/nar/gkh293

Ottman, 2017, Genome-Scale Model and Omics Analysis of Metabolic Capacities of Akkermansia muciniphila Reveal a Preferential Mucin-Degrading Lifestyle, Appl. Environ. Microbiol., 83, e01014-17, 10.1128/AEM.01014-17

Ouwerkerk, 2016, Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer, Appl. Environ. Microbiol., 82, 6983, 10.1128/AEM.01641-16

Aalvink, 2018, Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation, Microb. Biotechnol., 11, 476, 10.1111/1751-7915.13033

Nugroho, 2017, Encapsulation of the therapeutic microbe Akkermansia muciniphila in a double emulsion enhances survival in simulated gastric conditions, Food Res. Int., 102, 372, 10.1016/j.foodres.2017.09.004

Pierre, 2016, Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice, Am. J. Physiol. Gastrointest. Liver Physiol., 311, G286, 10.1152/ajpgi.00202.2016

Van der Ark, K. (2018). Metabolic Characterization and Viable Delivery of Akkermansia muciniphila for Its Future Application. [Ph.D. Thesis, Wageningen University].

Dubourg, 2013, High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment, Int. J. Antimicrob. Agents, 41, 149, 10.1016/j.ijantimicag.2012.10.012

Dubourg, 2017, First isolation of Akkermansia muciniphila in a blood-culture sample, Clin. Microbiol. Infect., 23, 682, 10.1016/j.cmi.2017.02.031

Caputo, 2015, Whole-genome assembly of Akkermansia muciniphila sequenced directly from human stool, Biol. Direct, 10, 5, 10.1186/s13062-015-0041-1

Espey, 2013, Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota, Free Radic. Biol. Med., 55, 130, 10.1016/j.freeradbiomed.2012.10.554

Johansson, 2011, Composition and functional role of the mucus layers in the intestine, Cell. Mol. Life Sci., 68, 3635, 10.1007/s00018-011-0822-3

Santiago, 2016, Alteration of the serum microbiome composition in cirrhotic patients with ascites, Sci. Rep., 6, 25001, 10.1038/srep25001

Traykova, D., Schneider, B., Chojkier, M., and Buck, M. (2017). Blood Microbiome Quantity and the Hyperdynamic Circulation in Decompensated Cirrhotic Patients. PLoS ONE, 12.

Collado, 2014, Resembling breast milk: Influence of polyamine-supplemented formula on neonatal BALB/cOlaHsd mouse microbiota, Br. J. Nutr., 111, 1050, 10.1017/S0007114513003565

Marcotte, 1998, Oral microbial ecology and the role of salivary immunoglobulin A, Microbiol. Mol. Biol. Rev., 62, 71, 10.1128/MMBR.62.1.71-109.1998

Aframian, 2006, The distribution of oral mucosal pH values in healthy saliva secretors, Oral Dis., 12, 420, 10.1111/j.1601-0825.2005.01217.x

Aas, 2005, Defining the normal bacterial flora of the oral cavity, J. Clin. Microbiol., 43, 5721, 10.1128/JCM.43.11.5721-5732.2005

Shaw, 2017, The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals, mBio, 8, e01237-17, 10.1128/mBio.01237-17

Bik, 2010, Bacterial diversity in the oral cavity of 10 healthy individuals, ISME J., 4, 962, 10.1038/ismej.2010.30

Nasidze, 2009, Comparative analysis of human saliva microbiome diversity by barcoded pyrosequencing and cloning approaches, Anal. Biochem., 391, 64, 10.1016/j.ab.2009.04.034

Sarkar, A., Stoneking, M., and Nandineni, M.R. (2017). Unraveling the human salivary microbiome diversity in Indian populations. PLoS ONE, 12.

Leake, 2016, The salivary microbiome for differentiating individuals: Proof of principle, Microbes Infect., 18, 399, 10.1016/j.micinf.2016.03.011

Ye, F., Shen, H., Li, Z., Meng, F., Li, L., Yang, J., Chen, Y., Bo, X., Zhang, X., and Ni, M. (2016). Influence of the Biliary System on Biliary Bacteria Revealed by Bacterial Communities of the Human Biliary and Upper Digestive Tracts. PLoS ONE, 11.

Marsh, 2015, Ecological approaches to oral biofilms: Control without killing, Caries Res., 49, 46, 10.1159/000377732

Linden, 2008, Mucins in the mucosal barrier to infection, Mucosal Immunol., 1, 183, 10.1038/mi.2008.5

Nielsen, 1997, Identification of a major human high molecular weight salivary mucin (MG1) as tracheobronchial mucin MUC5B, Glycobiology, 7, 413, 10.1093/glycob/7.3.413

Thornton, 1999, Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product, Glycobiology, 9, 293, 10.1093/glycob/9.3.293

Camp, 1990, Utilization of mucin by oral Streptococcus species, Antonie Leeuwenhoek, 57, 165, 10.1007/BF00403951

Derrien, 2010, Mucin-bacterial interactions in the human oral cavity and digestive tract, Gut Microbes, 1, 254, 10.4161/gmic.1.4.12778

Tan, 2014, The pancreas, Anaesth. Intensive Care Med., 15, 485, 10.1016/j.mpaic.2014.07.010

Velloso, 2015, Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies, J. Diabetes Res., 2015, 284680

Jouvet, 2017, The pancreas: Bandmaster of glucose homeostasis, Exp. Cell Res., 360, 19, 10.1016/j.yexcr.2017.03.050

Patel, 1995, Pancreatic interstitial pH in human and feline chronic pancreatitis, Gastroenterology, 109, 1639, 10.1016/0016-5085(95)90654-1

Memba, 2017, The potential role of gut microbiota in pancreatic disease: A systematic review, Pancreatology, 17, 867, 10.1016/j.pan.2017.09.002

Rogers, 2017, Disturbances of the Perioperative Microbiome Across Multiple Body Sites in Patients Undergoing Pancreaticoduodenectomy, Pancreas, 46, 260, 10.1097/MPA.0000000000000726

Nishiyama, 2018, Supplementation of pancreatic digestive enzymes alters the composition of intestinal microbiota in mice, Biochem. Biophys. Res. Commun., 495, 273, 10.1016/j.bbrc.2017.10.130

Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., and Schultz, S.G. (1986). Mechanisms of bile secretion and hepatic transport. Physiology of Membrane Disorders, Springer.

Sutor, 1976, Diurnal variations in the pH of pathological gallbladder bile, Gut, 17, 971, 10.1136/gut.17.12.971

Boyer, 2013, Bile formation and secretion, Compr. Physiol., 3, 1035, 10.1002/cphy.c120027

Islam, 2011, Bile acid is a host factor that regulates the composition of the cecal microbiota in rats, Gastroenterology, 141, 1773, 10.1053/j.gastro.2011.07.046

Inagaki, 2006, Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor, Proc. Natl. Acad. Sci. USA, 103, 3920, 10.1073/pnas.0509592103

Gass, 2007, Enhancement of dietary protein digestion by conjugated bile acids, Gastroenterology, 133, 16, 10.1053/j.gastro.2007.04.008

Hofmann, 1976, The enterohepatic circulation of bile acids in man, Adv. Intern. Med., 21, 501

Csendes, 1975, Bacteriology of the gallbladder bile in normal subjects, Am. J. Surg., 129, 629, 10.1016/0002-9610(75)90334-7

Shen, 2015, Metagenomic sequencing of bile from gallstone patients to identify different microbial community patterns and novel biliary bacteria, Sci. Rep., 5, 17450, 10.1038/srep17450

Wu, T., Zhang, Z., Liu, B., Hou, D., Liang, Y., Zhang, J., and Shi, P. (2013). Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genom., 14.

Pereira, P., Aho, V., Arola, J., Boyd, S., Jokelainen, K., Paulin, L., Auvinen, P., and Farkkila, M. (2017). Bile microbiota in primary sclerosing cholangitis: Impact on disease progression and development of biliary dysplasia. PLoS ONE, 12.

Scheithauer, 2009, Characterization of the complex bacterial communities colonizing biliary stents reveals a host-dependent diversity, ISME J., 3, 797, 10.1038/ismej.2009.36

Stearns, 2011, Bacterial biogeography of the human digestive tract, Sci. Rep., 1, 170, 10.1038/srep00170

Belzer, 2006, Urease induced calcium precipitation by Helicobacter species may initiate gallstone formation, Gut, 55, 1678, 10.1136/gut.2006.098319

Saltykova, I.V., Petrov, V.A., Logacheva, M.D., Ivanova, P.G., Merzlikin, N.V., Sazonov, A.E., Ogorodova, L.M., and Brindley, P.J. (2016). Biliary Microbiota, Gallstone Disease and Infection with Opisthorchis felineus. PLoS Negl. Trop. Dis., 10.

Fedorova, 2018, Opisthorchis felineus infection prevalence in Western Siberia: A review of Russian literature, Acta Trop., 178, 196, 10.1016/j.actatropica.2017.11.018

Fanning, 2012, Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection, Proc. Natl. Acad. Sci. USA, 109, 2108, 10.1073/pnas.1115621109

Gueimonde, 2009, Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis, Appl. Environ. Microbiol., 75, 1204, 10.1128/AEM.00908-08

Gum, 1997, MUC3 human intestinal mucin. Analysis of gene structure, the carboxyl terminus, and a novel upstream repetitive region, J. Biol. Chem., 272, 26678, 10.1074/jbc.272.42.26678

Pigny, 1996, Human mucin genes assigned to 11p15.5: Identification and organization of a cluster of genes, Genomics, 38, 340, 10.1006/geno.1996.0637

Keates, 1997, Molecular cloning of a major human gall bladder mucin: Complete C-terminal sequence and genomic organization of MUC5B, Biochem. J., 324, 295, 10.1042/bj3240295

Yoo, 2016, MUC Expression in Gallbladder Epithelial Tissues in Cholesterol-Associated Gallbladder Disease, Gut Liver, 10, 851, 10.5009/gnl15600

Zoetendal, 2012, The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates, ISME J., 6, 1415, 10.1038/ismej.2011.212

Savage, 1977, Microbial ecology of the gastrointestinal tract, Annu. Rev. Microbiol., 31, 107, 10.1146/annurev.mi.31.100177.000543

Hung, 2006, Development of a new method for small bowel transit study, Ann. Nucl. Med., 20, 387, 10.1007/BF03027373

Ovesen, 1986, Intraluminal pH in the stomach, duodenum, and proximal jejunum in normal subjects and patients with exocrine pancreatic insufficiency, Gastroenterology, 90, 958, 10.1016/0016-5085(86)90873-5

Koziolek, 2015, Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap((R)) System, J. Pharm. Sci., 104, 2855, 10.1002/jps.24274

Atuma, 2001, The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo, Am. J. Physiol. Gastrointest. Liver Physiol., 280, G922, 10.1152/ajpgi.2001.280.5.G922

Johansson, 2008, The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria, Proc. Natl. Acad. Sci. USA, 105, 15064, 10.1073/pnas.0803124105

Sender, R., Fuchs, S., and Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol., 14.

Donaldson, 2016, Gut biogeography of the bacterial microbiota, Nat. Rev. Microbiol., 14, 20, 10.1038/nrmicro3552

Morikawa, M., Tsujibe, S., Kiyoshima-Shibata, J., Watanabe, Y., Kato-Nagaoka, N., Shida, K., and Matsumoto, S. (2016). Microbiota of the Small Intestine Is Selectively Engulfed by Phagocytes of the Lamina Propria and Peyer’s Patches. PLoS ONE, 11.

Sundin, O.H., Mendoza-Ladd, A., Zeng, M., Diaz-Arevalo, D., Morales, E., Fagan, B.M., Ordonez, J., Velez, P., Antony, N., and McCallum, R.W. (2017). The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol., 17.

Angelakis, E., Armougom, F., Carriere, F., Bachar, D., Laugier, R., Lagier, J.C., Robert, C., Michelle, C., Henrissat, B., and Raoult, D. (2015). A Metagenomic Investigation of the Duodenal Microbiota Reveals Links with Obesity. PLoS ONE, 10.

Shanahan, 2016, Characterisation of the gastrointestinal mucosa-associated microbiota: A novel technique to prevent cross-contamination during endoscopic procedures, Aliment. Pharmacol. Ther., 43, 1186, 10.1111/apt.13622

Li, E., Hamm, C.M., Gulati, A.S., Sartor, R.B., Chen, H., Wu, X., Zhang, T., Rohlf, F.J., Zhu, W., and Gu, C. (2012). Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS ONE, 7.

Hartman, 2009, Human gut microbiome adopts an alternative state following small bowel transplantation, Proc. Natl. Acad. Sci. USA, 106, 17187, 10.1073/pnas.0904847106

Haberman, 2014, Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature, J. Clin. Investig., 124, 3617, 10.1172/JCI75436

Dlugosz, 2015, No difference in small bowel microbiota between patients with irritable bowel syndrome and healthy controls, Sci. Rep., 5, 8508, 10.1038/srep08508

Chen, 2016, Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology, Sci. Rep., 6, 34055, 10.1038/srep34055

Assa, 2016, Mucosa-Associated Ileal Microbiota in New-Onset Pediatric Crohn’s Disease, Inflamm. Bowel. Dis., 22, 1533, 10.1097/MIB.0000000000000776

Li, 2015, Diversity of Duodenal and Rectal Microbiota in Biopsy Tissues and Luminal Contents in Healthy Volunteers, J. Microbiol. Biotechnol., 25, 1136, 10.4014/jmb.1412.12047

Wang, 2005, Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes, FEMS Microbiol. Ecol., 54, 219, 10.1016/j.femsec.2005.03.012

Rossen, 2015, The mucosa-associated microbiota of PSC patients is characterized by low diversity and low abundance of uncultured Clostridiales II, J. Crohns Colitis, 9, 342, 10.1093/ecco-jcc/jju023

Patrascu, 2017, A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic, Sci. Rep., 7, 40248, 10.1038/srep40248

Plovier, 2017, A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice, Nat. Med., 23, 107, 10.1038/nm.4236

Macfarlane, 2007, Models for intestinal fermentation: Association between food components, delivery systems, bioavailability and functional interactions in the gut, Curr. Opin. Biotechnol., 18, 156, 10.1016/j.copbio.2007.01.011

Madsen, 1992, Effects of gender, age, and body mass index on gastrointestinal transit times, Dig. Dis. Sci., 37, 1548, 10.1007/BF01296501

Nugent, 2001, Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs, Gut, 48, 571, 10.1136/gut.48.4.571

McDougall, 1993, Colonic mucosal pH in humans, Dig. Dis. Sci., 38, 542, 10.1007/BF01316512

Johansson, 2011, The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions, Proc. Natl. Acad. Sci. USA, 108, 4659, 10.1073/pnas.1006451107

Ambort, 2012, Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin, Proc. Natl. Acad. Sci. USA, 109, 5645, 10.1073/pnas.1120269109

Johansson, 2016, Immunological aspects of intestinal mucus and mucins, Nat. Rev. Immunol., 16, 639, 10.1038/nri.2016.88

Zhang, 2014, Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota, ISME J., 8, 881, 10.1038/ismej.2013.185

Arumugam, 2011, Enterotypes of the human gut microbiome, Nature, 473, 174, 10.1038/nature09944

Costea, 2018, Enterotypes in the landscape of gut microbial community composition, Nat. Microbiol., 3, 8, 10.1038/s41564-017-0072-8

Walker, A.W., Sanderson, J.D., Churcher, C., Parkes, G.C., Hudspith, B.N., Rayment, N., Brostoff, J., Parkhill, J., Dougan, G., and Petrovska, L. (2011). High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol., 11.

Codling, 2010, A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome, Dig. Dis. Sci., 55, 392, 10.1007/s10620-009-0934-x

Carroll, 2012, Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome, Neurogastroenterol. Motil., 24, 521, 10.1111/j.1365-2982.2012.01891.x

Tap, 2017, Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome, Gastroenterology, 152, 111, 10.1053/j.gastro.2016.09.049

Ley, 2005, Obesity alters gut microbial ecology, Proc. Natl. Acad. Sci. USA, 102, 11070, 10.1073/pnas.0504978102

Schwiertz, 2010, Microbiota and SCFA in lean and overweight healthy subjects, Obesity, 18, 190, 10.1038/oby.2009.167

Qin, 2012, A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, 490, 55, 10.1038/nature11450

Cummings, 1991, The control and consequences of bacterial fermentation in the human colon, J. Appl. Bacteriol., 70, 443, 10.1111/j.1365-2672.1991.tb02739.x

Clausen, 1995, Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis, Gut, 37, 684, 10.1136/gut.37.5.684

Loison, 2003, Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation, J. Biol. Chem., 278, 25481, 10.1074/jbc.M301403200

Brown, 2003, The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids, J. Biol. Chem., 278, 11312, 10.1074/jbc.M211609200

Nilsson, 2003, Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids, Biochem. Biophys. Res. Commun., 303, 1047, 10.1016/S0006-291X(03)00488-1

Flint, 2012, The role of the gut microbiota in nutrition and health, Nat. Rev. Gastroenterol. Hepatol., 9, 577, 10.1038/nrgastro.2012.156

Possemiers, 2011, The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals, Fitoterapia, 82, 53, 10.1016/j.fitote.2010.07.012

Kamada, 2013, Control of pathogens and pathobionts by the gut microbiota, Nat. Immunol., 14, 685, 10.1038/ni.2608

McHardy, 2013, Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships, Microbiome, 1, 17, 10.1186/2049-2618-1-17

Lyra, 2012, Comparison of bacterial quantities in left and right colon biopsies and faeces, World J. Gastroenterol., 18, 4404, 10.3748/wjg.v18.i32.4404

Hong, P.Y., Croix, J.A., Greenberg, E., Gaskins, H.R., and Mackie, R.I. (2011). Pyrosequencing-based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PLoS ONE, 6.

Sanapareddy, 2012, Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans, ISME J., 6, 1858, 10.1038/ismej.2012.43

Belzer, 2017, Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B12 Production by Intestinal Symbionts, mBio, 8, e00770-17, 10.1128/mBio.00770-17

Derrien, M. (2007). Mucin Utilisation and Host Interactions of the Novel Intestinal Microbe Akkermansia muciniphila. [Ph.D. Thesis, Wageningen University].

Willis, 1996, In VitroEffects of Mucin Fermentation on the Growth of Human Colonic Sulphate-Reducing Bacteria: Ecology, Anaerobe, 2, 117, 10.1006/anae.1996.0015

Ottman, 2017, Action and function of Akkermansia muciniphila in microbiome ecology, health and disease, Best Pract. Res. Clin. Gastroenterol., 31, 637, 10.1016/j.bpg.2017.10.001

Barbas, 2007, Biofilms in the large bowel suggest an apparent function of the human vermiform appendix, J. Theor. Biol., 249, 826, 10.1016/j.jtbi.2007.08.032

Darwin, C. (1871). The Descent of Man and Selection in Relation to Sex Darwin, John Murray.

Smith, 2013, Multiple independent appearances of the cecal appendix in mammalian evolution and an investigation of related ecological and anatomical factors, C. R. Palevol., 12, 339, 10.1016/j.crpv.2012.12.001

Berry, 1900, The True Caecal Apex, or the Vermiform Appendix: Its Minute and Comparative Anatomy, J. Anat. Physiol., 35, 83

Merchant, 2011, Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development, Eur. J. Pharm. Sci., 42, 3, 10.1016/j.ejps.2010.09.019

Zhong, 2014, Acute appendicitis in children is associated with an abundance of bacteria from the phylum Fusobacteria, J. Pediatr. Surg., 49, 441, 10.1016/j.jpedsurg.2013.06.026

Jackson, H.T., Mongodin, E.F., Davenport, K.P., Fraser, C.M., Sandler, A.D., and Zeichner, S.L. (2014). Culture-independent evaluation of the appendix and rectum microbiomes in children with and without appendicitis. PLoS ONE, 9.

Salo, 2017, Evaluation of the microbiome in children’s appendicitis, Int. J. Colorectal. Dis., 32, 19, 10.1007/s00384-016-2639-x

Guinane, 2013, Microbial composition of human appendices from patients following appendectomy, mBio, 4, e00366-12, 10.1128/mBio.00366-12

Bode, 2012, Human milk oligosaccharides: Every baby needs a sugar mama, Glycobiology, 22, 1147, 10.1093/glycob/cws074

Zivkovic, 2011, Human milk glycobiome and its impact on the infant gastrointestinal microbiota, Proc. Natl. Acad. Sci. USA, 108, 4653, 10.1073/pnas.1000083107

Bidart, 2014, A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei, Mol. Microbiol., 93, 521, 10.1111/mmi.12678

Jost, 2015, Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health, Nutr. Rev., 73, 426, 10.1093/nutrit/nuu016

Newburg, 2000, Oligosaccharides in human milk and bacterial colonization, J. Pediatr. Gastroenterol. Nutr., 30, S8, 10.1097/00005176-200000002-00003

Collado, 2012, Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk, Pediatr. Res., 72, 77, 10.1038/pr.2012.42

Aakko, 2017, Human milk oligosaccharide categories define the microbiota composition in human colostrum, Benef. Microbes, 8, 563, 10.3920/BM2016.0185

Urbaniak, 2014, Microbiota of human breast tissue, Appl. Environ. Microbiol., 80, 3007, 10.1128/AEM.00242-14

Koropatkin, 2012, How glycan metabolism shapes the human gut microbiota, Nat. Rev. Microbiol., 10, 323, 10.1038/nrmicro2746

Tailford, 2015, Mucin glycan foraging in the human gut microbiome, Front. Genet., 6, 81, 10.3389/fgene.2015.00081

Ottman, N. (2015). Host Immunostimulation and Substrate Utilization of the Gut Symbiont Akkermansia muciniphila. [Ph.D. Thesis, Wageningen University].

Havenaar, 2009, Bioavailability of ferulic acid is determined by its bioaccessibility, J. Cereal Sci., 49, 296, 10.1016/j.jcs.2008.12.001

Maathuis, 2010, Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis, Microbiology, 156, 3270, 10.1099/mic.0.042044-0

Molly, 1993, Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem, Appl. Microbiol. Biotechnol., 39, 254, 10.1007/BF00228615

Roos, 2012, Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli, Microb. Biotechnol., 5, 106, 10.1111/j.1751-7915.2011.00308.x

Grootaert, 2010, Microbial Community Development in a Dynamic Gut Model Is Reproducible, Colon Region Specific, and Selective for Bacteroidetes and Clostridium Cluster IX, Appl. Environ. Microbiol., 76, 5237, 10.1128/AEM.00759-10

Geirnaert, 2017, In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent, Benef. Microbes, 8, 81, 10.3920/BM2016.0013

Kemperman, 2013, Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome, Food Res. Int., 53, 659, 10.1016/j.foodres.2013.01.034

Vissenaekens, 2017, Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract, J. Agric. Food Chem., 65, 5480, 10.1021/acs.jafc.7b02049

Belzer, 2013, Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model, ISME J., 7, 949, 10.1038/ismej.2012.158