Microbial Cellulose Utilization: Fundamentals and Biotechnology Tập 66 Số 3 - Trang 506-577 - 2002
Lee R. Lynd, Paul J. Weimer, Willem H. van Zyl, Isak S. Pretorius
SUMMARYFundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for “consolidated bioprocessing” (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Kháng sinh Tetracycline: Cơ chế tác dụng, Ứng dụng, Sinh học phân tử và Dịch tễ học của Kháng khuẩn Kháng Khuẩn Tập 65 Số 2 - Trang 232-260 - 2001
Ian Chopra, Marilyn C. Roberts
TÓM TẮT
Tetracyclines được phát hiện vào những năm 1940 và cho thấy hoạt tính chống lại nhiều vi sinh vật bao gồm vi khuẩn gram dương và gram âm, chlamydiae, mycoplasma, rickettsiae và ký sinh trùng nguyên sinh. Đây là những loại kháng sinh ít tốn kém, đã được sử dụng rộng rãi trong dự phòng và điều trị nhiễm khuẩn ở người và động vật cũng như ở mức độ dưới điều trị trong thức ăn chăn nuôi để thúc đẩy tăng trưởng. Vi khuẩn kháng tetracycline đầu tiên, Shigella dysenteriae, được phân lập vào năm 1953. Kháng tetracycline hiện nay xuất hiện ngày càng nhiều trong các vi khuẩn gây bệnh, cơ hội và cộng sinh. Sự hiện diện của các tác nhân kháng tetracycline hạn chế việc sử dụng các chất này trong điều trị bệnh. Kháng tetracycline thường là do sự thu nhận gen mới, mã hóa cho sự bơm đẩy tetracycline phụ thuộc năng lượng hoặc cho một loại protein bảo vệ ribosome của vi khuẩn khỏi tác động của tetracycline. Nhiều trong số các gen này liên quan đến plasmid di động hoặc transposon và có thể được phân biệt với nhau bằng các phương pháp phân tử bao gồm lai ghép DNA-DNA với đầu dò oligonucleotide và giải trình tự DNA. Một số lượng ít vi khuẩn có được sự kháng bệnh thông qua đột biến, thay đổi tính thấm của porin màng ngoài và/hoặc lipopolysaccharides trong màng ngoài, thay đổi điều tiết của hệ thống bơm đẩy bẩm sinh, hoặc thay đổi 16S rRNA. Đang có các dẫn xuất mới của tetracycline được nghiên cứu, mặc dù vai trò của chúng trong điều trị chưa rõ ràng. Cần thay đổi việc sử dụng tetracycline trong sức khỏe con người và động vật cũng như trong sản xuất thực phẩm nếu chúng ta muốn tiếp tục sử dụng loại kháng khuẩn phổ rộng này trong thế kỷ hiện tại.
#tetracycline #kháng rửa #kháng sinh #kháng khuẩn #vi khuẩn kháng #chlamydiae #mycoplasma #rickettsiae #động vật nguyên sinh #gen di động #hóa sinh #lai ghép DNA-DNA #16S rRNA #plasmid #transposon #đột biến #dịch tễ học #sức khỏe động vật #sản xuất thực phẩm
Cơ Chế Phân Tử về Tính Thẩm Thấu của Màng Ngoài Vi Khuẩn Được Xem Xét Lại Tập 67 Số 4 - Trang 593-656 - 2003
Hiroshi Nikaido
TÓM TẮTVi khuẩn Gram âm đặc trưng bởi việc có thêm một lớp màng, được gọi là màng ngoài. Mặc dù các thành phần của màng ngoài thường đóng vai trò quan trọng trong việc tương tác của vi khuẩn cộng sinh hoặc gây bệnh với vật chủ, vai trò chính của màng này thường là tạo một hàng rào thẩm thấu để ngăn chặn sự xâm nhập của các hợp chất độc hại và đồng thời cho phép hấp thu các phân tử dinh dưỡng. Bài tổng quan này tóm tắt những phát triển trong lĩnh vực này kể từ khi bài tổng quan trước đó (H. Nikaido và M. Vaara, Microbiol. Rev. 49:1-32, 1985) được công bố. Với việc phát hiện các kênh protein, kiến thức cấu trúc cho phép chúng ta hiểu chi tiết ở mức phân tử về cách các porin, kênh đặc hiệu, thụ thể liên kết TonB và các protein khác hoạt động. Chúng ta đã bắt đầu thấy cách các protein lớn được xuất ra qua màng ngoài. Với kiến thức về cấu trúc bất đối xứng của lipopolysaccharide-phospholipid của màng ngoài, cuối cùng chúng ta cũng bắt đầu hiểu cách mà lớp kép này có thể kìm hãm sự xâm nhập của các hợp chất kỵ nước, nhờ vào sự hiểu biết ngày càng tăng về hóa học của lipopolysaccharide từ các sinh vật khác nhau và cách cấu trúc lipopolysaccharide được điều chỉnh bởi điều kiện môi trường.
#màng ngoài vi khuẩn #tính thẩm thấu #porin #kênh protein #thụ thể TonB #lipopolysaccharide
<i>Bacillus thuringiensis</i> và Các Protein Tinh thể diệt côn trùng của nó Tập 62 Số 3 - Trang 775-806 - 1998
E. Schnepf, N. Crickmore, Jeroen Van Rie, Didier Lereclus, James A. Baum, Jerald S. Feitelson, Daniel R. Zeigler, Donald H. Dean
TÓM TẮT
Trong suốt thập kỷ qua, vi khuẩn diệt côn trùng Bacillus thuringiensis đã trở thành đối tượng được nghiên cứu sâu rộng. Những nỗ lực này đã đem lại nhiều dữ liệu đáng kể về mối quan hệ phức tạp giữa cấu trúc, cơ chế hoạt động và di truyền của các protein tinh thể diệt côn trùng của sinh vật này, và hình ảnh nhất quán về những mối quan hệ này bắt đầu được hình thành. Các nghiên cứu khác tập trung vào vai trò sinh thái của protein tinh thể B. thuringiensis, hiệu quả của chúng trong các bối cảnh nông nghiệp và thiên nhiên khác, và sự phát triển của các cơ chế kháng cự ở các loài dịch hại mục tiêu. Với nền tảng kiến thức này cùng với công cụ công nghệ sinh học hiện đại, các nhà nghiên cứu hiện đang báo cáo những kết quả đầy hứa hẹn trong việc tạo ra các độc tố và công thức hữu ích hơn, trong việc tạo ra cây trồng chuyển gen có khả năng diệt côn trùng, và trong việc xây dựng các chiến lược quản lý tích hợp để đảm bảo rằng các sản phẩm này được sử dụng với hiệu quả và lợi ích tối đa.
#Bacillus thuringiensis #protein tinh thể #diệt côn trùng #nghiên cứu sinh thái #công nghệ sinh học #cây trồng chuyển gen
Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases Tập 75 Số 1 - Trang 50-83 - 2011
Marie Cargnello, Philippe P. Roux
SUMMARYThe mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants Tập 62 Số 2 - Trang 379-433 - 1998
Christoph J. Hueck
SUMMARYVarious gram-negative animal and plant pathogens use a novel, sec-independent protein secretion system as a basic virulence mechanism. It is becoming increasingly clear that these so-called type III secretion systems inject (translocate) proteins into the cytosol of eukaryotic cells, where the translocated proteins facilitate bacterial pathogenesis by specifically interfering with host cell signal transduction and other cellular processes. Accordingly, some type III secretion systems are activated by bacterial contact with host cell surfaces. Individual type III secretion systems direct the secretion and translocation of a variety of unrelated proteins, which account for species-specific pathogenesis phenotypes. In contrast to the secreted virulence factors, most of the 15 to 20 membrane-associated proteins which constitute the type III secretion apparatus are conserved among different pathogens. Most of the inner membrane components of the type III secretion apparatus show additional homologies to flagellar biosynthetic proteins, while a conserved outer membrane factor is similar to secretins from type II and other secretion pathways. Structurally conserved chaperones which specifically bind to individual secreted proteins play an important role in type III protein secretion, apparently by preventing premature interactions of the secreted factors with other proteins. The genes encoding type III secretion systems are clustered, and various pieces of evidence suggest that these systems have been acquired by horizontal genetic transfer during evolution. Expression of type III secretion systems is coordinately regulated in response to host environmental stimuli by networks of transcription factors. This review comprises a comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp., Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, enteropathogenic Escherichia coli, and Chlamydia spp. and the plant pathogens Pseudomonas syringae, Erwinia spp., Ralstonia solanacearum, Xanthomonas campestris, and Rhizobium spp.
ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions Tập 68 Số 2 - Trang 320-344 - 2004
Philippe P. Roux, John Blenis
SUMMARY
Conserved signaling pathways that activate the mitogen-activated
protein kinases (MAPKs) are involved in relaying extracellular
stimulations to intracellular responses. The MAPKs
coordinately regulate cell proliferation, differentiation, motility,
and survival, which are functions also known to be mediated by members
of a growing family of MAPK-activated protein kinases (MKs;
formerly known as MAPKAP kinases). The MKs are related
serine/threonine kinases that respond to mitogenic and stress stimuli
through proline-directed
phosphorylation and activation of
the kinase domain by extracellular signal-regulated kinases 1 and 2 and
p38 MAPKs. There are currently 11 vertebrate MKs in five
subfamilies based on primary sequence homology: the ribosomal S6
kinases, the mitogen- and stress-activated kinases, the
MAPK-interacting kinases, MAPK-activated protein
kinases 2 and 3, and MK5. In the last 5 years, several MK substrates
have been identified, which has helped tremendously to identify the
biological role of the members of this family. Together with data from
the study of MK-knockout mice, the identities of the MK substrates
indicate that they play important roles in diverse biological
processes, including mRNA translation, cell proliferation and
survival, and the nuclear genomic response to mitogens and cellular
stresses. In this article, we review the existing data on the MKs and
discuss their physiological functions based on recent
discoveries.
Khai thác sinh học cho vi sinh vật nội sinh và các sản phẩm thiên nhiên của chúng Tập 67 Số 4 - Trang 491-502 - 2003
Gary A. Strobel, Bryn Daisy
TÓM TẮT
Vi sinh vật nội sinh được tìm thấy trong hầu hết các loài thực vật trên Trái đất. Những sinh vật này cư trú trong các mô sống của cây chủ và thiết lập nhiều mối quan hệ khác nhau, từ cộng sinh đến hơi bệnh khuẩn. Nhờ vai trò đóng góp của chúng cho cây chủ, vi sinh vật nội sinh có khả năng tạo ra một loạt các chất có tiềm năng sử dụng trong y học hiện đại, nông nghiệp và công nghiệp. Các kháng sinh mới, thuốc chống nấm, chất ức chế miễn dịch, và hợp chất chống ung thư chỉ là một vài ví dụ trong số những gì đã được tìm thấy sau khi phân lập, cấy, tinh chế và đặc tính hóa một số vi sinh vật nội sinh được lựa chọn trong thời gian gần đây. Khả năng tiềm năng tìm kiếm các loại thuốc mới có thể là ứng cử viên hiệu quả để điều trị các bệnh đang phát triển mới ở người, thực vật và động vật rất lớn.
#vi sinh vật nội sinh #sản phẩm thiên nhiên #cộng sinh #kháng sinh #thuốc chống nấm #chất ức chế miễn dịch #hợp chất chống ung thư #phân lập #cấy vi sinh vật #tinh chế #đặc tính hóa #y học hiện đại #nông nghiệp #công nghiệp
Nhiều Con Đường Tái Tổ Hợp Do Gãy Kép Dẫn Xuất Trong Saccharomyces cerevisiae Tập 63 Số 2 - Trang 349-404 - 1999
Frédéric Pâques, James E. Haber
TÓM TẮT Nấm men chồi Saccharomyces cerevisiae đã được sử dụng như là sinh vật chính trong các thí nghiệm nhằm nghiên cứu tái tổ hợp di truyền ở sinh vật nhân thực. Các nghiên cứu trong thập kỷ qua đã chỉ ra rằng tái tổ hợp trong giảm phân và khả năng là phần lớn các tái tổ hợp trong nguyên phân phát sinh từ quá trình sửa chữa gãy chuỗi kép (DSB). Có nhiều con đường theo đó DSB có thể được sửa chữa, bao gồm một số con đường tái tổ hợp đồng dạng và một số cơ chế không đồng dạng. Sự hiểu biết của chúng ta cũng đã được làm phong phú hơn nhờ việc đặc trưng hóa nhiều protein liên quan đến tái tổ hợp và nhờ vào các khám phá kết nối các khía cạnh của sửa chữa DNA với sự nhân đôi nhiễm sắc thể. Các mô hình phân tử mới về chuyển đổi gene do DSB gây ra được trình bày. Bài báo này bao quát các khía cạnh khác nhau của tái tổ hợp do DSB gây ra trong Saccharomyces và cố gắng liên hệ các nghiên cứu di truyền, sinh học phân tử và hóa sinh của các quá trình sửa chữa và tái tổ hợp DNA.
#Saccharomyces cerevisiae #tái tổ hợp di truyền #gãy chuỗi kép (DSB) #giảm phân #nguyên phân #tái tổ hợp đồng dạng #sửa chữa DNA #nhân đôi nhiễm sắc thể