Microbial Cellulose Utilization: Fundamentals and Biotechnology
Tóm tắt
Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for “consolidated bioprocessing” (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Từ khóa
Tài liệu tham khảo
Bailey, M. J., M. Siika-aho, A. Valkeajärvi, and M. E. Penttilä. 1993. Hydrolytic properties of two cellulases of Trichoderma reesei expressed in yeast. Biotechnol. Appl. Biochem.17:65-76.
Beavan, M. J., C. Charpentier, A. H. Rose. 1982. Production and tolerance of ethanol in relation to phopholipid fatty-acyl composition in Saccharomyces cerevisiae.J. Gen. Microbiol.128:1447-1455.
Bedino, S., G. Testore, and F. Obert. 1985. Comparative study of glucosidases from the thermophilic fungus Thermoascus aurantiacus Miehe—purification and characterization of intracellular beta-glucosidase. Ital. J. Biochem.34:341-355.
Bélaïch J.-P. A. Bélaïch H.-P. Fierobe L. Gal C. Gaudin S. Pagés C. Reverbel-Leroy and C. Tardif. 1999. The cellulolytic system of Clostridium cellulolyticum p. 479-487. In K. Ohmiya K. Hayashi K. Sakka Y. Kobayashi S. Karita and T. Kimura (ed.) Genetics biochemistry and ecology of cellulose degradation. Uni Publishers Tokyo Japan.
Bird R. B. W. E. Stewart E. N. Lightfoot. 1960. Transport phenomena. John Wiley & Sons Inc. New York N.Y.
Bond, K., and F. Stutzenberger. 1989. A note on the localization of cellulosome formation in Thermomonospora curvata.J. Appl. Bacteriol.67:605-609.
Brestic-Goachet, N., P. Gunasekaran, B. Cami, and J. C. Baratti. 1989. transfer and expression of an Erwinia chrysanthemi cellulase gene in Zymomonas mobilis. J. Gen. Microbiol.135:893-902.
Brown, D. E., and M. A. Zainudeen. 1977. Growth kinetics and cellulase biosynthesis in continuous culture of Trichoderma viride. Biotechnol. Bioeng.14:941-958.
Brown M. A. and M. D. Levine. 1993. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report 11. Evaluation of a wood-to-ethanol process. DOE/EP-0004. U.S. Department of Energy Washington D.C.
Carlile M. J. and S. C. Watkinson. 1997. The fungi p. 269-275. Academic Press New York N.Y.
Caulfield, D. F., and W. E. Moore. 1974. Effect of varying crystallinity of cellulose on enzymatic hydrolysis. Wood Sci.6:375-377.
Chang, V. S., B. Burr, and M. T. Holtzapple. 1997. Lime pretreatment of switchgrass. Appl. Biochem. Biotechnol.63-65:3-19.
Chang, V. S., and M. T. Holtzapple. 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol.84-86:5-37.
Chauvet, E., and J. Mercé. 1988. Aquatic hyphomycetes: their role in the decomposition of leaf-litter. Rev. Sci. Eau1:203-216.
Cho, K. M., and Y. J. Yoo. 1999. Novel SSF process for ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast, Saccharomyces cerevisiae L2612δGC. J. Microbiol. Biotechnol.9:340-345.
Converse A. O. 1993. Substrate factors limiting enzymatic hydrolysis p. 93-106. In J. N. Saddler (ed.) Bioconversion of forest and agricultural plant residues. CAB International Wallinford Conn.
Copa-Patiño, J. L., G. K. Young, and P. Broda. 1993. Production and initial characterisation of the xylan-degrading system of Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol.40:69-76.
Coughlan M. P. 1990. Cellulose degradation by fungi p. 1-35. In W.M. Fogarty and C.T. Kelly (ed.) Microbial enzymes and biotechnology 2nd ed. Elsevier Applied Science London United Kingdom.
Coutinho P. M. and B. Henrissat. 1999. The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach p. 15-23 In K. Ohmiya K. Hayashi K. Sakka Y. Kobayashi S. Karita and T. Kimura (ed.) Genetics biochemistry and ecology of cellulose degradation Uni Publishers Co. Tokyo Japan.
Cowling, E. B. 1975. Physical and chemical constraints in the hydrolysis of cellulose and lignocellulosic materials. Biotechnol. Bioeng. Symp.5:163-181.
Dale B. E. 1999. Biobased industrial products: priorities for research and commercialization. National Research Council National Academy Press Washington D.C.
Dale, B. E., and M. J. Moriera. 1982. A freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol. Bioeng. Symp. Ser.12:31-43.
Dequin, S., E. Baptista, and P. Barre. 1999. Acidification of grape musts by Saccharomyces cerevisiae wine yeast strains genetically engineered to produce lactic acid. Am. J. Enol. Vitic.50:45-50.
Dermoun, Z., and J. P. Bélaïch. 1988. Crystalline index change in cellulose during aerobic and anaerobic Cellulomonas uda growth. Appl. Microbiol. Biotechnol.27:399-404.
Desgranges, C., C. Vergoignan, M. Georges, and A. Durand. 1991. Biomass estimation in solid state fermentation. Appl. Biochem. Biotechnol.35:200-205.
Doerner, K. C., G. T. Howard, R. I. Mackie, and B. A. White. 1992. β-Glucanase expression in Ruminococcus flavefaciens FD-1. FEMS Microbiol. Lett.93:147-153.
Donaldson, L. A., K. K. Y. Wong, and K. L. Mackie. 1988. Ultrastructure of steam-exploded wood. Wood Sci. Technol.22:103-114.
Eriksson K. E. L. R. A. Blanchette and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components Springer-Verlag New York N.Y.
Fields, M. W., J. B. Russell, and D. B. Wilson. 1998. The role of ruminal carboxymethylcellulases in the degradation of β-glucans from cereal grain. FEMS Microbiol. Ecol.27:261-268.
Fiérobe, H.-P., C. Bagnara-Tardif, C. Gaudin, F. Guerlesquin, P. Sauvé, A. Bélaïch, and J.-P. Bélaïch. 1993. Purification and characterization of endo-glucanase C from Clostridium cellulolyticum. Catalytic comparison with endonuclease A. Eur. J. Biochem.217:557-565.
Friberg F. C. Otto and B. S. Svensson. 1980. Effects of acidification dynamics of allochthonous leaf material and benthic invertebrate communities in running water p. 304-305. In D. Drablos and A. Tollan (ed.) Ecological impact of acid precipitation. Sur Nedbors Virkning Pa Skog og Fisk Oslo Norway.
Godden B. and M. J. Penninckx. 1984. Identification and evolution of the cellulolytic microflora present during composting of cattle manure: on the role of actinomycetes sp. Ann. Microbiol. 135B : 69-78.
González, G., G. Caminal, C. de Mas, and J. López-Santin. 1989. A kinetic model for pretreated wheat straw saccharification by cellulase. J. Chem. Technol. Biotechnol.44:275-288.
Gordon R. E. W. C. Haynes and C. Hor-Nay Pang. 1973. The genus Bacillus . Agriculture handbook 427. Agricultural Research Service US. Department of Agriculture Washington D.C.
Green, E. M., and G. N. Bennett. 1996. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl. Biochem. Biotechnol.57-58:213-221.
Grethlein, H. E. 1985. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Bio/Technology2:155-160.
Gusakov, A. V., A. P. Sinitsyn, J. A. Manenkova, and O. V. Protas. 1992. Enzymatic saccharification of industrial and agricultural lignocellulosic wastes—main features of the process. Appl. Biochem. Biotechnol.34-35:625-637.
Hahn-Hägerdal, B., F. Wahlbom, M. Gárdonyi, W. H. van Zyl, R. R. Cordero Otero, and L. Jönsson. 2001. Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation—a review. Adv. Biochem. Eng. Biotechnol.73:53-84.
Hashimoto, S., M. Fujita, and R. A. Baccay. 1982. Biomass determination in the anaerobic digestion of night soil. J. Ferment. Technol.60:51-54.
Herrero-Molina A. A. 1981. The physiology of Clostridium thermocellum in relation to its energy metabolism. Ph.D. thesis Massachusetts Institute of Technology Cambridge.
Hettenhaus J. and D. Glassner. 1997. Cellulase assessment for biomass hydrolysis. National Renewable Energy Laboratory Golden Colo.
Hill, P. W., T. R. Klapatch, and L. R. Lynd. 1993. Bioenergetics and end-product regulation of Clostridium thermosaccharolyticum in response to nutrient limitation. Biotechnol. Bioeng.43:873-883.
Hinman, N. D., J. Schell, C. J. Riley, P. W. Bergeron, and P. J. Walter. 1992. Preliminary estimate of the cost of ethanol production for SSF technology. Appl. Biochem. Biotechnol.34-35:639-649.
Ho, N. W. Y., Z. Chen, A. Brainard, and M. Sedlak. 1999. Successful design and development of genetically-engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biotechnol.65:164-192.
Holub, Z., A. Simonovicova, and V. Banasova. 1993. The influence of acidification on some chemical and microbiological properties of soil, those determining plant viability. Biologia (Bratislava)48:671-675.
Honda, H., S. Iijima, and T. Kobayashi. 1988. Cloning and expression in Saccharomyces cerevisiae of an endo-β-glucanase gene from a thermophilic cellulolytic anaerobe. Appl. Microbiol. Biotechnol.28:57-58.
Hon-Nami K. S. Goto M. Tomita Y. Takagi K. Sekine E. Okuma S. Yonemura K. Sato and T. Saiki. 1988. Direct microbial conversion of cellulose to ethanol by a new isolate Clostridium thermocellum I-1-B. p. 71-76. In Proceedings of the 8th International Symposium on Alcohol Fuels. New Energy and Industrial Development Corporation Tokyo Japan.
Hsu T.-A. 1996. Pretreatment of biomass p. 179-212. In C. E. Wyman (ed.) Handbook on biomass ethanol. Taylor and Francis Washington D.C.
Huang, A. A. 1975. Enzymatic hydrolysis of cellulose to sugar. Biotechnol. Bioeng. Symp.5:245-252.
Huang, T.-L., Y. W. Han, and C. D. Callihan. 1971. Application of the Lowry method for determination of cell concentration in fermentation of waste cellulosics. J. Ferment. Technol.49:574-576.
Hulcher, F. H., and K. W. King. 1957. Disaccharide preference for an aerobic cellulolytic bacterium, Cellvibrio gilvus n.sp. J. Bacteriol.76:565-570.
Hungate R. E. 1966. The rumen and its microbes. Academic Press Inc. New York N.Y.
Ilmén, M., M. L. Onnela, S. Klemsdal, S. Keränen, and M. Penttilä. 1996. Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei.Mol. Gen. Genet.253:303-314.
Ingram L. O. and D. P. Clark. July 1991. Ethanol production using engineered mutant E. coli . U.S. patent 5 028 539.
Jacobsen, S. E., and C. E. Wyman. 2000. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl. Biochem. Biotechnol.84-86:81-96.
Jeffries, T. W., and N.-Q. Shi. 1999. Genetic engineering for improved xylose fermentation by yeasts. Adv. Biochem. Eng. Biotechnol.65:117-161.
Johnson E. A. 1983. Regulation of cellulase activity and synthesis in Clostridium thermocellum. Ph.D. thesis. Massachusetts Institute of Technology Cambridge.
Johnson, E. A., F. Bouchot, and A. L. Demain. 1985. Regulation of cellulase formation in Clostridium thermocellum.J. Gen. Microbiol.131:2303-2308.
Khan, A. W., M. Asther, and C. Giuliano. 1984. Utilization of steam- and explosion-decompressed aspen wood by some anaerobes. J. Ferment. Technol.62:335-339.
Khan, A. W., E. Meek, L. C. Sowden, and J. R. Colvin. 1994. Emendation of genus Acetivibrio and description of Acetivibrio cellulosolvens, new species, of nonmotile cellulolytic mesophile. Int. J. Syst. Bacteriol.34:410-422.
Kim, B. H. 1987. Carbohydrate catabolism in cellulolytic strains of Cellulomonas, Pseudomonas, and Nocardia. Korean J. Microbiol.25:28-33.
Kistner, A., J. H. Kornelius, and G. S. Miller. 1983. Kinetic measurements on bacterial cultures growing on fibres. S. Afr. J. Anim. Sci.13:217-220.
Klapatch, T. R., D. A. L. Hogsett, S. Baskaran, S. Pal, and L. R. Lynd. 1994. Organism development and characterization for ethanol production using thermophilic bacteria. Appl. Biochem. Biotechnol.45-46:209-223.
Klyosov A. A. 1988. Cellulases of the third generation p. 97-99. In J.-P. Aubert P. Beguin and J. Millet (ed.) Biochemistry and genetics of cellulose degradation. Academic Press Ltd. London United Kingdom.
Knappert, D. R., H. E. Grethlein, and A. O. Converse. 1981. Partial acid hydrolysis of poplar wood as a pretreatment for enzymatic hydrolysis. Biotechnol. Bioeng. Symp. Ser.11:66-77.
Kolbe, J., and C. P. Kubicek. 1990. Quantification and identification of the main components of the Trichoderma cellulase complex with monoclonal antibodies using an enzyme-linked immunosorbent (ELISA) assay. Appl. Microbiol. Biotechnol.34:26-30.
Kubicek C. P. and M. E. Penttilä. 1998. Regulation of production of plant polysaccharide degrading enzymes by Trichoderma p. 49-72. In G. E. Harman and C. P. Kubicek (ed.) Trichoderma and Gliocladium vol. 2 ed. Taylor & Francis Ltd. London United Kingdom.
Kurane, R., T. Suzuki, Y. Takahara, N. Kurita, and M. Miyaji. 1979. Application of fluorescent antibody staining technique to trace the microorganism inoculated in biological treatment systems. Agric. Biol. Chem.43:2093-2098.
Lee, S. S., J. K. Ha, H. S. Kang, T. McAllister, and K.-J. Cheng. 1997. Overview of energy metabolism, substrate utilization and fermentation characteristics of ruminal anaerobic fungi. Korean J. Anim. Nutr. Feedstuffs21:295-314.
Leedle, J. A. Z., M. L. Coe, and R. A. Frey. 1995. Evaluation of health and ruminal variables during adaptation to grain-based diets in beef cattle. Am. J. Vet. Res.56:885-892.
Lin, K. W., M. R. Ladisch, D. M. Schaefer, C. H. Noller, V. Lechtenberg, and G. T. Tsao. 1981. Review on effect of pretreatment on digestibility of cellulosic materials. AIChE Symp. Ser.207:102-106.
Ljungdahl L. G. F. Bryant L. Carriera T. Saiki and J. Wiegel. 1981. Some aspects of thermophilic and extreme thermophilic microorganisms p. 397-419. In A. Holleander (ed.) Trends in the biology of fermentations for fuels and chemicals. Plenum Press New York N.Y.
Lou, J. R., K. A. Dawson, and H. J. Stobel. 1997. Cellobiose and cellodextrin metabolism by the ruminal bacterium Ruminococcus albus.Appl. Environ. Microbiol.35:221-227.
Lovitt, R. W., B. H. Kim, G.-J. Shen, and J. G. Zeikus. 1989. Solvent production by micoorganisms. Crit. Rev. Biotechnol.7:107-186.
Lynch J. M. 1988. The terrestrial environment p. 103-131. In J. M. Lynch and J. E. Hobbie (ed.) Microorganisms in action: concepts and applications in microbial ecology 2nd ed. Blackwell Scientific Publishers Oxford United Kingdom.
Lynd, L. R. 1989. Ethanol production from lignocellulosic substrates using thermophilic bacteria: critical evaluation of potential and review, Adv. Biochem. Eng. Biotechnol.38:1-52.
Lynd, L. R., H.-J. Ahn, G. Anderson, P. W. Hill, D. S. Kersey, T. Klapatch. 1991. Thermophilic ethanol production: investigation of ethanol yield and tolerance in continuous culture. Appl. Biochem. Biotechnol.28/29:549-570.
Lynd, L. R., R. T. Elander, and C. E. Wyman. 1996. Likely features and costs of mature biomass ethanol technology. Appl. Biochem. Biotechnol.57-58:741-761.
Lynd, L. R., K. Lyford, C. R. South, G. P. van Walsum, and K. Levenson. 2001. Evaluation of paper sludges for amenability to enzymatic hydrolysis and conversion to ethanol. Tappi J.82:1-19.
Lynd, L. R., R. H. Wolkin, and H. E. Grethlein. 1987. Continuous fermentation of pretreated hardwood and Avicel by Clostridium thermocellum.Biotechnol. Bioeng. Symp. Ser.17:265-274.
Mai V. and J. Wiegel. 1999. Recombinant DNA applications in thermophiles p. 511-519. In A. L. Demain and J. E. Davis (ed. in chief) Manual of industrial microbiology and biotechnology 2nd ed. ASM Press Washington D.C.
Marchessault R. H. and P. R. Sundararajan. 1993. Cellulose p. 11-95 In G. O. Aspinall (ed.) The polysaccharides vol. 2. Academic Press Inc. New York N.Y.
Meyer, C. L., and E. T. Papoutsakis. 1989. Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol.30:450-459.
Miron, J., and D. Ben-Ghedalia. 1992. The degradation and utilization of wheat-straw cell-wall monosaccharide components by defined ruminal cellulolytic bacteria. Appl. Microbiol. Biotechnol.38:432-437.
Montgomery, L., B. A. Flesher, and D. A. Stahl. 1982. Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int. J. Syst. Bacteriol.38:430-435.
Mosier, N. S., P. Hall, C. M. Ladisch, and M. R. Ladisch. 1999. Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. Adv. Biochem. Eng. Biotechnol.65:23-40.
Nieves, R. A., Y.-C. Chou, M. E. Himmel, and S. R. Thomas. 1995. Quantification of Acidothermus cellulolyticus E1 endoglucanase and Thermomonospora fusca E3 exoglucanase using enzyme-linked immunosorbent assay (ELISA). Appl. Biochem. Biotechnol.51-52:211-223.
Nishise, H., A. Ogawa, Y. Tani, and H. Yamada. 1985. Studies on microbial glycerol dehydrogenase. 4: glycerol dehydrogenase and glycerol dissimilation in Cellulomonas sp. NT3060. Agric. Biol. Chem.49:629-636.
Nutor, J. R. K., and A. O. Converse. 1991. The effect of enzyme and substrate levels on the specific hydrolysis rate of pretreated poplar wood. Appl. Biochem. Biotechnol.28-29:757-772.
Ozkan, M. S., G. Desai, Y. Zhang, D. M. Stevenson, J. Beane, M. L. Guerinot, and L. R. Lynd. 2002. Characterization of thirteen newly-isolated strains of anaerobic, cellulolytic, thermophilic bacteria. J. Ind. Microbiol. Biotechnol.27:275-280.
Pavlostathis, S. G., T. L. Miller, M. J. Wolin. 1990. Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl. Microbiol. Biotechnol.33:109-116.
Penttilä M. 1998. Heterologous protein production in Trichoderma p. 365-382 In G. E. Harman and C. P. Kubicek (ed.) Trichoderma and Gliocladium . Taylor and Francis Ltd. London United Kingdom.
Penttilä M. P. Lehtovaara and J. Knowies. 1989. Cellulolytic yeast and their applications p. 247-267. In P. J. Barr A. J. Brake and P. Valenzuela (ed.) Yeast genetic engineering. Butterworth Stoneham Mass.
Phillips-Jones, M. K. 1995. Introduction of recombinant DNA into Clostridium spp. Methods Mol. Biol.47:227-235.
Pretorius I. S. 1997. Utilization of polysaccharides by Saccharomyces cerevisiae p. 435-458. In F. K. Zimmermann and K. D. Entian (ed.) Yeast sugar metabolism—1997. Technomic Publishing Company Lancaster Pa.
Puls, J., K. Poutanen, H. U. Körner, and L. Viikari. 1985. Biotechnological utilization of wood carbohydrates after steaming pretreatment. Appl. Microbiol. Biotechnol.22:416-423.
Rabinovich, M. L., V. M. Chernoglazov, and A. A. Klesov. 1983. Isoenzymes of endoglucanase in cellulase complexes: different affinity for cellulose and different role in the hydrolysis of an insoluble substrate. Biochemistry48:321-329.
Rapp P. and A. Beerman. 1991. Bacterial cellulases. p. 535-595. In C. H. Haigler and P. J. Weimer (ed.) Biosynthesis and biodegradation of cellulose. Marcel Dekker Inc. New York N.Y.
Reczey, K., A. Brumbauer, M. Bollok, Z. Szengyel, and G. Zacchi. 1998. Use of hemicellulose hydrolysate for β-glucosidase fermentation. Appl. Biochem. Biotechnol.70-72:225-235.
Reese E. T. and M. Mandels. 1971. Enzymatic degradation. p. 1079-1094. In N. M. Bikales and L. Segal (ed.) Cellulose and cellulose derivatives. Wiley Interscience New York N.Y.
Rogers P. and G. Gottschalk. 1993. Biochemistry and regulation of acid and solvent production in clostridia. p. 25-50. In D. R. Woods (ed.) The clostridia and biotechnology. Butterworth-Heinemann Stoneham Mass.
Rood J. I. 1997. Genetic analysis in Clostridium perfringens p. 67-72. In J. I. Rood B. A. McClane and J. G. Songer (ed.) The clostridia: molecular biology and pathogenesis. Academic Press Ltd. London United Kingdom.
Russell, J. B. 1992. Another explanation for the toxicity of fermenting acids at low pH: anion accumulation vs uncoupling. J. Appl. Biotechnol.73:363-370.
Sacco, M., J. Millet, and J. P. Aubert. 1984. Cloning and expression in Saccharomyces cerevisiae of a cellulase gene from Clostridium thermocellum. Ann. Microbiol. (Inst. Pasteur)135A:485-488.
Sandgren, M., A. Shaw, T. H. Ropp, S. Wu, R. Bott, A. D. Cameron, J. Ståhlberg, C. Mitchinson, and T. A. Jones. 2000. The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 Å resolution. J. Mol. Biol.308:295-310.
Shimizu, T., K. Kudo, H. Tanaka, and Y. Nasu. 1992. Cellulose digestion by an extremely thermophilic anaerobic bacterium. Osaka Soc. Ferment. Technol.70:443-449.
Singh, A., A. B. Abidi, A. K. Agarwal, and N. S. Darmwal. 1991. Single cell protein production by Aspergillus niger and its evaluation. Zentbl. Mikrobiol.146:181-184.
Skipper N. A. R. P. Bozzato D. Vetter R. W. Davies R. Wong and J. E. Hopper. 1987. Use of the melibiase promoter and signal peptide to express a bacterial cellulase from yeast p. 137-148 In G. G. Stewart I. Russell R. D. Klein and R. R. Hiebsch (ed.). Biological research on industrial yeasts. vol. 1. CRC Press Inc. Boca Raton Fla.
Slapack G. E. I. Russell and G. G. Stewart. 1987. Thermophilic microbes in ethanol production. CRC Press Inc. Boca Raton Fla.
Slater J. H. 1988. Microbial populations and community dynamics p. 51-74. In J. M. Lynch and J. E. Hobbie (ed.) Micro-organisms in action: concepts and applications in microbial ecology 2nd ed . Blackwell Scientific Publishers Oxford United Kingdom.
South, C. R., D. A. Hogsett, and L. R. Lynd. 1993. Continuous fermentation of cellulosic biomass to ethanol. Appl. Biochem. Biotechnol.39-40:587-600.
Ståhlberg, J., G. Johansson, and G. Petterson. 1991. A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase-1. Bio/Technology9:286-290.
Sternberg, D. 1976. Production of cellulase by Trichoderma. Biotechnol. Bioeng. Symp. Ser.6:35-53.
Stewart, C. S., and H. J. Flint. 1989. Bacteroides (Fibrobacter) succinogenes, a cellulolytic anaerobic bacterium from the gastrointestinal tract. Appl. Microbiol. Biotechnol.30:433-439.
Stone, J. E., and A. M. Scallan. 1968. A structural model for the cell wall of water-swollen wood pulp fibres based on their accessibility to macromolecules. Cellulose Chem. Technol.3:343-358.
Stutzenberger F. 1990. Bacterial cellulases p. 37-70. In W. M. Fogarty and C. T. Kelly (ed.) Microbial enzymes and biotechnology 2nd ed. Elsevier Applied Science London United Kingdom.
Suihko, M. L., U. Lehtinen, B. Zurbriggen, A. Vilpola, J. Knowles, and M. Pentillä. 1991. Construction and analysis of recombinant glucanolytic brewer's yeast strains. Appl. Microbiol. Biotechnol.35:781-787.
Sutcliffe, R., and J. N. Saddler. 1986. The role of lignin in the adsorption of cellulases during enzymatic treatment of lignocellulosic material. Biotechnol. Bioeng. Symp. Ser.17:749-762.
Suvajittanont, W., J. McGuire, and M. K. Bothwell. 2000. Adsorption of Thermomonospora fusca E5 cellulase on silanized silica. Biotechnol. Bioeng.67:12-18.
Svetlichnyi, V. A., T. P. Svetlichnaya, N. A. Chernykh, and G. A. Zavarzin. 1990. Anaerocellum thermophilum, new genus new species, an extremely thermophilic cellulolytic eubacterium isolated from hot springs in the valley of geysers (Russian SFSR, USSR). Mikrobiologiya59:598-604.
Tanahashi, M., S. Takada, T. Aoki, T. Goto, T. Higuchi, and S. Hanai. 1983. Characterization of explosion wood. 1. Structure and physical properties. Wood Res.69:36-51.
Tanaka, M., H. Nakamura, M. Taniguchi, T. Morita, R. Matsuno, and T. Kamikubo. 1986. Elucidation of adsorption processes of cellulases during hydrolysis of crystalline cellulose. Appl. Microbiol. Biotechnol.23:263-268.
Tardif, C., H. MaÂmar, M. Balfin, and J. P. Belaich. 2001. Electrotransformation studies in Clostridium cellulolyticum. J. Ind. Microbiol. Biotechnol.16:1-4.
Torget, R. W., P. Walter, M. Himmel, and K. Grohmann. 1991. Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl. Biochem. Biotechnol.28-29:75-86.
Tsoi, T. V., N. A. Chuvil'skaya, Y. Y. Atakishieva, T. D. Dzhavakhishvili, V. K. Akimenko, and A. M. Boronin. 1987. Clostridium thermocellum—a new object of genetic investigations. Mol. Genet. Mikrobiol. Virusol.11:18-23.
Ueda, M., and A. Tanaka. 2000. Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J. Biosci. Bioeng.90:125-136.
Van Arsdell, J. N., S. Kwok, V. L. Schweickart, M. B. Ladner, D. H. Gelfand, and M. A. Innis. 1987. Cloning, characterization and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei. Bio/technology5:60-64.
Vance, I., C. M. Topham, S. L. Blayden, and J. Tampion. 1980. Extracellular cellulase production by Sporocytophaga myxococcoides NCIB 8639. J. Gen. Microbiol.117:235-242.
Van Soest, P. J. 1973. The uniformity and nutritive availability of cellulose. Fed. Proc.32:1804-1808.
Van Soest P. J. 1994. Nutritional ecology of the ruminant 2nd ed. Cornell University Press Ithaca N.Y.
Van Uden, N. 1985. Ethanol toxicity and ethanol tolerance in yeasts. Annu. Rep. Ferment. Proc.8:1-58.
Wang, D. Z., Y. Zu, and P. Gao. 1996. Studies of the regulation of cellulase systems by ATP and cAMP in mycelial fungi. Weishengwu Xuebao36:12-18.
Weimer, P. J., and C. L. Odt. 1995. Cellulose degradation by ruminal microbes: physiological and hydrolytic diversity among ruminal cellulolytic bacteria. ACS Symp. Ser.618:291-304.
Wells, J. E., and J. B. Russell. 1994. The endogenous metabolism of Fibrobacter succinogenes and its relation to cellobiose transport, viability, and cellulose digestion. Appl. Microbiol. Biotechnol.41:471-476.
Wiegel, J., and M. Dykstra. 1984. Clostridium thermocellum: adhesion and sporulation while adhered to cellulose and hemicellulose. Appl. Microbiol. Biotechnol.20:59-65.
Wiegel, J., and L. G. Ljungdahl. 1986. The importance of the cellulosome of Clostridium thermocellum. Appl. Biochem. Biotechnol.43:147-151.
Wilson, C. A., and T. M. Wood. 1992. The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl. Microbiol. Biotechnol.37:125-129.
Wilson, D. B., and D. C. Irwin. 1999. Genetics and properties of cellulases. Adv. Biochem. Eng. Biotechnol.65:1-21.
Wilson J. R. 1993. Organization of forage plant tissues p. 1-32. In H. G. Jung D. R. Buxton R. D. Hatfield and J. Ralph (ed.) Forage cell wall structure and digestibility. American Society of Agronomy—Crop Science Society of America—Soil Science Society of America Madison Wisc.
Wolin M. J. 1990. Rumen fermentation: biochemical interactions between the populations of a microbial community p. 237-251. In D. E. Akin et al. Microbial and plant opportunities to improve lignocellulose utilization by ruminants. Elsevier Science Publications New York N.Y.
Wong, W. K. R., C. Curry, H. R. S. Parekh, M. Wayman, R. W. Davies, D. G. Kilburn, and N. Skipper. 1988. Wood hydrolysis by Cellulomonas fimi endoglucanase and exoglucanase coexpressed as secreted enzymes in Saccharomyces cerevisiae. Bio/technology6:713-719.
Wood T. M. and V. Garcia-Campayo. 1994. Enzymes and mechanisms involved in microbial cellulolysis p. 197-231. In C. Ratledge (ed.) Biochemistry of microbial degradation. Kluwer Academic Publishers Dordrecht The Netherlands.
Woodward, J., M. K. Hayes, and N. E. Lee. 1988. Hydrolysis of cellulose by saturating and non-saturating concentrations of cellulase: implications for synergism. Bio/Technology6:301-304.
Wright, J. D. 1988. Ethanol from biomass by enzymatic hydrolysis. Chem. Eng. Prog.84:62-74.
Wu, L., and N. E. Welker. 1989. Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA. J. Gen. Microbiol.135:1315-1324.