Journal of Biogeography
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
It is often assumed that species generally reach their highest densities in the centre of their range and decline in abundance towards the range edges. A number of mechanisms have been proposed that could theoretically support this pattern, and several ecological theories have been developed based on the assumption that this pattern occurs in nature. However, few studies have quantified geographical patterns of species abundance throughout species ranges. This is largely because of the logistical challenges of sampling throughout the large spatial areas of most species ranges. We use intertidal invertebrates, which have relatively well defined linear ranges, to test the hypothesis that species are most abundant in the centres of their ranges.
Our sampling programme covered all or most of the ranges of twelve intertidal invertebrate species along the Pacific coast of North America, from Cabo San Lucas (Baja California, Mexico) to Shelikof Island (AK, USA).
We sampled invertebrate density at forty‐two field sites using quadrat and transect methods. We used a shape fitting procedure to find idealized range shapes that best fit the sampled distributions of abundance. The idealized range shapes represented both a distribution where abundance was highest at the range centre and distributions where abundance was highest at one or both of the range edges.
Overall, this suite of species did not show the expected pattern of high abundance near the range centre. Six of the species showed patterns indicative of high densities near one of their range edges, whereas only two showed patterns with high densities near their range centres. Furthermore, nine of the twelve species had sites near the range edges in which density ranked in the top 20% of all sites.
The hypothesis that species are most abundant in the centre of their ranges cannot be generalized to this diverse suite of intertidal organisms. The diversity of distribution shapes that we found suggest that evolutionary and ecological theories that assume high abundance at range centres should be re‐examined with consideration of alternative abundance distributions. We suggest that sampled geographical distributions of abundance can be combined with demographic and physical factor data taken at the same scale to test hypotheses related to the causes of range boundaries and the responses of species ranges to climatic change.
Phylogeography has grown explosively in the two decades since the word was coined and the discipline was outlined in 1987. Here I summarize the many achievements and novel perspectives that phylogeography has brought to population genetics, phylogenetic biology and biogeography. I also address future directions for the field. From the introduction of mitochondrial DNA assays in the late 1970s, to the key distinction between gene trees and species phylogenies, to the ongoing era of multi‐locus coalescent theory, phylogeographic perspectives have consistently challenged conventional genetic and evolutionary paradigms, and they have forged empirical and conceptual bridges between the formerly separate disciplines of population genetics (microevolutionary analysis) and phylogenetic biology (in macroevolution).
(1) To synthesize data on the physical and phylogeographical history of the Mexican highlands, with a focus on the Trans‐Mexican Volcanic Belt (
Mexico.
We performed a literature and data survey of the climatic, geological and phylogeographical history of the Mexican highlands. We then assessed how the expected effects of topographic isolation, co‐occurring palaeoclimatic fluctuations and volcanism can be tested against the distribution of genetic diversity of high‐elevation taxa.
The Mexican highlands present a complex biogeographical, climatic and geological history. Montane taxa have been exposed to a sky‐island dynamic through climate fluctuations, allowing for long‐term
Climate fluctuations, together with recent volcanism, have driven the diversification and local persistence of biodiversity within the Mexican highlands. The climate–volcanism interaction is challenging to study; however, this can be overcome by coupling genomic data with landscape analyses that integrate the geological and climatic history of the region.
I challenge (1) the assumption that habitat patches are natural units of measurement for species richness, and (2) the assumption of distinct effects of habitat patch size and isolation on species richness. I propose a simpler view of the relationship between habitat distribution and species richness, the ‘habitat amount hypothesis’, and I suggest ways of testing it. The habitat amount hypothesis posits that, for habitat patches in a matrix of non‐habitat, the patch size effect and the patch isolation effect are driven mainly by a single underlying process, the sample area effect. The hypothesis predicts that species richness in equal‐sized sample sites should increase with the total amount of habitat in the ‘local landscape’ of the sample site, where the local landscape is the area within an appropriate distance of the sample site. It also predicts that species richness in a sample site is independent of the area of the particular patch in which the sample site is located (its ‘local patch’), except insofar as the area of that patch contributes to the amount of habitat in the local landscape of the sample site. The habitat amount hypothesis replaces two predictor variables, patch size and isolation, with a single predictor variable, habitat amount, when species richness is analysed for equal‐sized sample sites rather than for unequal‐sized habitat patches. Studies to test the hypothesis should ensure that ‘habitat’ is correctly defined, and the spatial extent of the local landscape is appropriate, for the species group under consideration. If supported, the habitat amount hypothesis would mean that to predict the relationship between habitat distribution and species richness: (1) distinguishing between patch‐scale and landscape‐scale habitat effects is unnecessary; (2) distinguishing between patch size effects and patch isolation effects is unnecessary; (3) considering habitat configuration independent of habitat amount is unnecessary; and (4) delineating discrete habitat patches is unnecessary.
- 1
- 2
- 3
- 4
- 5
- 6
- 10