Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests

Journal of Biogeography - Tập 39 Số 5 - Trang 884-900 - 2012
Tiina Särkinen1,2,3, R. Toby Pennington3, Matt Lavin4, Marcelo F. Simon5, Colin E. Hughes1,6
1Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK,
2Natural History Museum, Cromwell Road, London SW7 5BD, UK
3Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH5 3LR, UK
4Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
5Embrapa Recursos Genéticos e Biotechnologia, PqEB, Caixa Postal 02372, Brasilia‐DF 70770‐917, Brazil
6Institute for Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland

Tóm tắt

AbstractAim  The tropical Andes are a world biodiversity hotspot. With diverse biomes and dramatic, geologically recent mountain uplift, they offer a system to study the relative contributions of geological and biome history to species richness. There are preliminary indications that historical species assembly in the Andes has been influenced by physiographical heterogeneity and that distinct biomes have evolved in relative isolation despite physical proximity. Here we test this ‘Andean biotic separation hypothesis’ by focusing on the low‐elevation, seasonally dry tropical forest (SDTF) biome to determine whether patterns of plant diversification within the SDTF differ from those in mid‐ and high‐elevation biomes.Location  Tropical Andes, South America.Methods  Densely sampled time‐calibrated phylogenies for five legume genera (Amicia, Coursetia, Cyathostegia, Mimosa and Poissonia) containing species endemic to the Andean SDTF biome were used to investigate divergence times and levels of geographical structure. Geographical structure was measured using isolation‐by‐distance methods. Meta‐analysis of time‐calibrated phylogenies of Andean plant groups was used to compare the pattern and tempo of endemic species diversification between the major Andean biomes.Results  Long‐term persistence of SDTF in the Andes is suggested by old stem ages (5–27 Ma) of endemic genera/clades within genera, and deep divergences coupled with strong geographical structure among and within species. Comparison of species diversification patterns among different biomes shows that the relatively old, geographically confined pattern of species diversification in SDTF contrasts with the high‐elevation grasslands that show rapid and recent radiations driven by ecological opportunities.Main conclusions  The SDTF biome has a long history in the Andes. We suggest that the diverse SDTF flora has been assembled gradually over the past c. 19 Ma from lineages exhibiting strong phylogenetic niche conservatism. These patterns suggest that Andean SDTFs have formed stable and strongly isolated ‘islands’ despite the upheavals of Andean uplift. Indeed, the Andean SDTFs may represent some of the most isolated and evolutionarily persistent continental plant communities, similar in many respects to floras of remote oceanic islands.

Từ khóa


Tài liệu tham khảo

10.1016/j.ympev.2003.08.021

10.1016/j.epsl.2006.07.012

10.1098/rstb.2009.0276

10.2307/4135624

Brako L., 1993, Catalogue of the flowering plants and gymnosperms of Peru

10.1002/j.1537-2197.1995.tb13863.x

10.3732/ajb.91.11.1767

10.1098/rstb.2004.1528

10.1038/nature07764

Cuatrecasas J., 1979, Tropical botany, 397

10.1073/pnas.0801962105

10.1186/1471-2148-7-214

10.1371/journal.pbio.0040088

10.1016/j.ympev.2007.09.014

10.1016/j.epsl.2009.02.026

10.1016/j.jembe.2011.03.020

10.1146/annurev.ecolsys.34.011802.132421

10.1126/science.1148615

10.2307/2399084

10.1093/icb/icj003

10.1126/science.1119365

10.18637/jss.v022.i07

van der Hammen T., 1986, High altitude tropical biogeography, 153

10.1144/0016-764902-083

10.1144/0016-764904-071

Hooghiemstra H., 1995, Biodiversity and conservation of Neotropical montane forests, 35

10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;2

10.1002/joc.938

10.1073/pnas.0601928103

10.1086/282487

Jørgensen P.M., 1999, Catalogue of the vascular plants of Ecuador

10.1111/j.1365-2699.2006.01682.x

10.1073/pnas.0608361104

Kroonenberg S.B., 1990, Late Cenozoic uplift and paleogeography of the Colombian Andes: constraints on the development of high‐Andean biota, Geologie en Mijnbouw, 69, 279

10.2307/25027701

10.1007/s12229-008-9006-8

Lavin M., 2003, Phylogeny of robinioid legumes (Fabaceae) revisited: Coursetia and Gliricidia re‐circumscribed, and a biogeographical appraisal of the Caribbean endemics, Systematic Botany, 28, 387

10.1201/9781420004496.ch11

10.1111/j.1365-2699.2008.02028.x

10.5822/978-1-61091-021-7_1

10.1016/j.tplants.2005.09.006

10.1111/j.0014-3820.2001.tb00826.x

Missouri Botanical Garden, 2009, Tropicos

Mittermeier R.A., 2005, Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions

10.1038/35002501

10.1146/annurev.ecolsys.28.1.105

10.2307/3298564

10.1038/nature03850

10.1046/j.1365-2699.2000.00397.x

10.1098/rstb.2003.1435

10.1146/annurev.ecolsys.110308.120327

10.1073/pnas.1001317107

10.1600/036364411X553135

10.1038/35025052

10.1600/036364411X553144

R Development Core Team, 2009, R: a language and environment for statistical computing

10.3732/ajb.89.7.1074

10.1111/j.0906-7590.2008.05333.x

10.1002/tax.601012

10.1073/pnas.0805607106

10.1130/G23532A.1

10.3732/ajb.0800185

10.1016/j.tecto.2008.03.011

10.1073/pnas.0903410106

10.1080/10635150701258787

10.1016/j.epsl.2007.07.023

10.1111/j.1365-294X.2008.03853.x

Tye A., 2000, Libro rojo de las plantas endemicas del Ecuador 2000, 24

10.1016/j.ympev.2008.01.037

10.1111/j.1472-4642.2007.00385.x

Whittaker R.J., 2007, Island biogeography, ecology, evolution, and conservation

10.1111/j.1365-2699.2008.01892.x

10.1111/j.0014-3820.2005.tb00977.x

10.1371/journal.pone.0001124