
Journal of Basic Microbiology
SCOPUS (1985-2023)SCIE-ISI
0233-111X
1521-4028
Đức
Cơ quản chủ quản: WILEY , Wiley-VCH Verlag
Các bài báo tiêu biểu
Microbial polysaccharides are multifunctional and can be divided into intracellular polysaccharides, structural polysaccharides and extracellular polysaccharides or exopolysaccharides (EPS). Extracellular polymeric substances (EPS), produced by both prokaryotes (eubacteria and archaebacteria) and eukaryotes (phytoplankton, fungi, and algae), have been of topical research interest. Newer approaches are carried out today to replace the traditionally used plant gums by their bacterial counterparts. The bacterial exopolysaccharides represent a wide range of chemical structures, but have not yet acquired appreciable significance. Chemically, EPS are rich in high molecular weight polysaccharides (10 to 30 kDa) and have heteropolymeric composition. They have new‐fangled applications due to the unique properties they possess. Owing to this, exopolysaccharides have found multifarious applications in the food, pharmaceutical and other industries. Hence, the present article converges on bacterial exopolysaccharides. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Iron is one of the major limiting factors and essential nutrients of microbial life. Since in nature it is not readily available in the preferred form, microorganisms produce small high affinity chelating molecules called siderophores for its acquisition. Microorganisms produce a wide variety of siderophores controlled at the molecular level by different genes to accumulate, mobilize and transport iron for metabolism. Siderophores also play a critical role in the expression of virulence and development of biofilms by different microbes. Apart from maintaining microbial life, siderophores can be harnessed for the sustainability of human, animals and plants. With the advent of modern molecular tools, a major breakthrough is taking place in the understanding of the multifaceted role of siderophores in nature. This mini review is intended to provide a general overview on siderophore along with its role and applications.
Nowadays, many researches have been made on gallotannin biodegradation and have gained great success in further utilization. Some of industrial applications of these findings are in the production of tannase, the biotransformation of tannic acid to gallic acid or pyrogallol and detannification of food and fodder. Although ellagitannins have the typical C–C bound which is more difficult to be degraded than gallotannins, concerted efforts are still in progress to improve ellagitannin degradation and utilization. Currently, more attention is mainly focused on intestinal microflora biodegradation of tannins especially ellagitannins which can contribute to the definition of their bioavailability for both human beings and ruminants. Also there have been endeavours to utilize the tannin‐degrading activity of different fungi for ellagitannin‐rich biomass, which will facilitate application of tannin‐degrading enzymes in strategies for improving industrial and livestock production. Due to the complicated structures of complex tannins and condensed tannins, the biodegradation of them is much more difficult and there are fewer researches on them. Therefore, the researches on the mechanisms of gallotannin and ellagitannin biodegradation can result in the overall understanding to the biodegradation of complex tannins and condensed tannins. Biodegradation of tannins is in an incipient stage and further studies have to be carried out to exploit the potential of various tannins for largescale applications in food, fodder, medicine and tannery effluent treatment. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Deoxynivalenol (DON) is a trichothecene secondary metabolite produced by
The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less‐toxic or even non‐toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast–mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.
The genetic diversity of 29 endophytic bacterial strains isolated from apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants grown in Cuba was analysed by Two Primers‐Ramdom Amplified Polymorphic DNA fingerprinting (TP‐RAPD) and 16S rRNA gene sequencing. The strains were distributed into 17 groups on the basis of their TP‐RAPD patterns, and a representative strain from each group was subjected to 16S rRNA gene sequencing. Analysis of these sequences showed that the isolates belong to a wide variety of phylogenetic groups being closely related to species of genera
Under aerobic conditions, the culturable microbial population of acidic forest soils was more tolerant to acidic cultivation conditions than was the culturable microbial population of less acidic soils. The number of culturable bacteria decreased sharply under acidic cultivation conditions, while the number of culturable fungi remained relatively constant over the pH range 2.2–6.5. The ratios of culturable bacteria to culturable fungi were greater than one at pH 6.5; in contrast, the bacteria‐to‐fungi ratios were less than one at pH 2.2–4. At pH's approximating those of the soils examined, culturable fungi predominated the culturable microbial community in acidic soils. However, relative to the populations resolved, acidic forest soils displayed a more acid tolerant bacterial population than did less acidic forest soils. The culturable fungal population contained both filamentous and yeast morphologies. An acid‐tolerant fungal isolate that grew at pH 1 was identified as a subspecies of
The filamentous fungus
A thermostable extracellular alkaline protease producing