Mycotoxins – prevention and decontamination by yeasts

Journal of Basic Microbiology - Tập 55 Số 7 - Trang 805-818 - 2015
Walter P. Pfliegler1,2,3, Tünde Pusztahelyi4, István Pócsi1
1Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
2Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
3Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences (MTA), Hungary
4Faculty of Agricultural and Food Sciences and Environmental Management, Central Laboratory, University of Debrecen, Debrecen, Hungary

Tóm tắt

The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less‐toxic or even non‐toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast–mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

Từ khóa


Tài liệu tham khảo

Nesic K., 2014, Fusarial toxins: secondary metabolites of Fusarium fungi, Rev. Environ. Contam. Toxicol., 228, 101

10.3109/15569541003598553

10.1146/annurev-food-030713-092431

10.3390/toxins4100788

Edlayne G., 2009, Chemical and biological approaches for mycotoxin control: a review, Recent Pat. Food. Nutr. Agric., 1, 155, 10.2174/2212798410901020155

10.1080/19440049.2011.595377

10.3389/fmicb.2014.00050

10.1080/10408390500436185

10.1080/15569540802416301

10.1017/S0953756297006047

10.1007/s12550-014-0189-z

10.1016/j.ijfoodmicro.2007.08.032

10.1007/s10886-013-0321-0

10.1080/03601234.2012.706558

10.1080/87559120903155750

10.1002/mnfr.200500181

10.1007/BF00436826

10.1007/BF02057804

10.1248/cpb.23.2439

10.1046/j.1365-2672.2000.00972.x

10.1002/ps.724

Chulze S.N., 2014, Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina, Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess.

10.1016/S0261-2194(00)00095-8

Tsitsigiannis D.I., 2012, Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops, Phytopathol. Mediterr., 51, 158

10.1016/j.postharvbio.2008.11.009

10.1016/j.ijfoodmicro.2013.09.004

10.3390/toxins4020068

10.4315/0362-028X-72.9.2006

10.1016/S1049-9644(03)00157-9

10.1016/j.ijfoodmicro.2012.11.016

10.1016/j.biocontrol.2011.03.003

10.1016/j.ijfoodmicro.2011.08.005

10.1002/yea.1304

10.1016/j.postharvbio.2012.08.001

10.1016/j.biocontrol.2008.04.015

10.1016/j.postharvbio.2010.12.010

10.1016/j.ijfoodmicro.2011.08.012

10.3390/toxins4121468

Cuero R.G., 1987, Stimulation by Hyphopichia burtonii and Bacillus amyloliquefaciens of aflatoxin production by Aspergillus flavus in irradiated maize and rice grains, Appl. Environ. Microbiol., 53, 1142, 10.1128/aem.53.5.1142-1146.1987

Repečkienė J., 2013, Toxin‐producing fungi on feed grains and application of yeasts for their detoxification, Pol. J. Vet. Sci., 16, 391, 10.2478/pjvs-2013-0054

10.1007/BF03036705

Duvick J. Rood T. Maddox J. Wang X. 1994. Abstracts Fifth International Mycological Congress Vancouver B.C. August 14–21 1994 Mycological Society of America International Mycological Association.

10.1002/(SICI)1522-7189(199902)7:1<31::AID-NT36>3.0.CO;2-W

10.1016/0278-6915(93)90155-R

10.3390/toxins2051078

10.1021/jf062768u

10.1007/BF02942950

10.1078/0723202042369947

10.1128/JCM.00460-09

10.1094/PHYTO-98-12-1261

10.1016/j.fm.2006.06.003

10.1016/j.ijfoodmicro.2013.01.007

10.3920/WMJ2008.1040

10.1021/jf203098v

10.4315/0362-028X.JFP-10-331

10.1128/AEM.03851-12

10.1080/02652030110091163

10.1128/AEM.01438-09

10.1111/j.1570-7458.1991.tb01522.x

10.1007/s00253-011-3401-5

10.1016/j.foodcont.2013.03.035

10.1016/j.fct.2013.06.010

10.1021/bm050968t

10.5713/ajas.2002.1051

10.4314/sajas.v34i3.3957

10.4315/0362-028X.JFP-11-023

10.4315/0362-028X-70.9.2148

10.1111/j.1472-765x.2012.03314.x

10.4315/0362-028X-71.7.1496

10.1016/j.ijfoodmicro.2006.07.013

10.4315/0362-028X.JFP-11-323

10.1111/jam.12552

10.1111/j.1365-2672.2012.05331.x

10.4315/0362-028X-67.6.1195

10.1002/jsfa.6683

10.2323/jgam.58.225

Śliżewska K., 2011, Detoxification of aflatoxin B1 and change in microflora pattern by probiotic in vitro fermentation of broiler feed, J. Anim. Feed Sci., 20, 300, 10.22358/jafs/66187/2011

10.3382/ps.2012-02846

Dogi C.A., 2011, Saccharomyces cerevisiae strains retain their viability and aflatoxin B1 binding ability under gastrointestinal conditions and improve ruminal fermentation, Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess., 28, 1705

10.4315/0362-028X.JFP-10-380

10.1590/S1517-83822010000100014

10.1016/j.foodcont.2012.09.033

Oliveira C.A.F., 2013, Aflatoxins—Recent Advances and Future Prospects, 59

10.1016/j.ijfoodmicro.2012.03.024

10.1111/jam.12144

10.1111/j.1365-2672.2004.02385.x

Bizaj E., 2009, Removal of ochratoxin A in Saccharomyces cerevisiae liquid cultures, S. Afr. J. Enol. Vitic. Stellenbosch, 30, 151

10.1016/j.fm.2005.08.003

Moruno E.G., 2005, Treatment with yeast to reduce the concentration of ochratoxin A in red wine, Am. J. Enol. Vitic., 56, 73, 10.5344/ajev.2005.56.1.73

10.1016/j.foodcont.2013.07.033

10.1007/s00217-012-1908-3

10.1556/AAlim.2011.0006

10.1016/j.foodcont.2008.05.017

10.1111/jam.12350

10.1016/j.foodcont.2014.09.042

10.1002/j.2050-0416.2009.tb00341.x

10.1016/j.procbio.2005.02.006

10.4315/0362-028X.JFP-10-326

10.1111/jam.12082

10.1080/19440049.2011.630679

10.1016/j.biortech.2009.12.040

10.1016/S0964-8305(02)00070-7

10.4315/0362-028X-57.1.48

Fasullo M., 2010, Aflatoxin B1‐associated DNA adducts stall S phase and stimulate Rad51 foci in Saccharomyces cerevisiae, J. Nucleic Acids, 456487

10.1016/0165-1161(78)90375-8

10.1016/j.fct.2013.07.006

10.1016/j.toxicon.2014.08.005

10.1016/j.fct.2010.04.031

10.1002/jobm.201100515

10.1016/j.fct.2012.07.001

10.1021/jf104938p

10.1021/jf052264g

10.3136/fstr.15.453

10.1094/MPMI-23-7-0962

10.1016/j.toxicon.2013.07.015

Dziuba E., 2007, The effect of mycotoxins on FAN metabolism and formation of volatile compounds in malt worts, Acta Sci. Pol. Biotechnol., 6, 15

10.1007/s00253-004-1816-y

10.1016/j.micres.2012.08.002

10.1186/1754-6834-4-26

10.1007/s00253-010-2486-6

10.1111/j.1567-1364.2011.00776.x

10.1016/j.ijfoodmicro.2012.03.008

10.1111/j.1567-1364.2008.00369.x

10.1128/AEM.02235-14

Pfliegler W.P., 2014, Generation of new genotypic and phenotypic features in artificial and natural yeast hybrids, Food Technol. Biotechnol., 52, 46

10.1111/j.1574-6968.2008.01480.x

10.1007/s13213-010-0086-4

10.1016/j.copbio.2007.01.010

10.1007/s10482-010-9528-z