International Journal of Developmental Neuroscience
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Gene transfer is an exciting new tool in medical therapy and scientific investigation, but only very recently has it begun to be developed in the auditory system. This paper describes
Neopterin, a pteridine mainly synthesized by activated macrophages, is a marker of inflammation, immune system activation and an active participant in Autism spectrum disorders (ASD). The aim of this study was to assess the clinical significance of plasma neopterin levels in ASD.
Eighty patients diagnosed with ASD and 80 sex and age matched typically developing children were assessed for plasma levels of neopterin at admission. Plasma neopterin levels were measured using a human ELISA kit and severity of ASD were evaluated with the Childhood Autism Rating Scale (CARS) score.
We found that the mean plasma neopterin level was significantly (
These results indicated that autistic children had higher plasma levels of neopterin, and elevated plasma neopterin levels may be associated with severity of ASD among Chinese children.
The neuroprotective effects of ethyl pyruvate (EP) have been proved in several brain injury models, yet very little is known about its action on neonatal white matter injury. To investigate the effect of EP on white matte damage, a stereotactic intracerebral injection of lipopolysaccharide (LPS, 1 mg/kg) was performed on postnatal day 5 Sprague–Dawley rat pups, and EP was administrated intraperitoneally at a dose of 40 mg/kg immediately, 1 h and 12 h after LPS exposure. Significantly, treatment with EP reduced LPS‐induced ventricle dilation, loss of O4+ and O1+ oligodendrocytes, apoptosis of oligodendrocytes, and hypomyelination. The protective effect of EP was associated with suppressed inflammatory responses, indicated by the inhibition of activation of microglia and astrocytes, as well as the decreased expression of tumor necrosis factor‐alpha (TNF‐α) and interleukin‐1beta (IL‐1β) in rat brains. Also, EP prevented the elevation of cleaved caspase‐3 in periventricular white matter tissue after LPS insult. Taken together, these results suggest that EP confers potent protection against LPS‐induced white matter injury
Amyloid precursor protein (APP) is essential to physiological processes such as synapse formation and neural plasticity. Sequential proteolysis of APP by beta‐ and gamma‐secretases generates amyloid‐beta peptide (Aβ), the main component of senile plaques in Alzheimer Disease. Alternative APP cleavage by alpha‐secretase occurs within Aβ domain, releasing soluble α‐APP (sAPPα), a neurotrophic fragment. Among other functions, sAPPα is important to synaptogenesis, neural survival and axonal growth. APP and sAPPα levels are increased in models of neuroplasticity, which suggests an important role for APP and its metabolites, especially sAPPα, in the rearranging brain. In this work we analyzed the effects of monocular enucleation (ME), a classical model of lesion‐induced plasticity, upon APP content, processing and also in secretases levels. Besides, we addressed whether α‐secretase activity is crucial for retinotectal remodeling after ME. Our results showed that ME induced a transient reduction in total APP content. We also detected an increase in α‐secretase expression and in sAPP production concomitant with a reduction in Aβ and β‐secretase contents. These data suggest that ME facilitates APP processing by the non‐amyloidogenic pathway, increasing sAPPα levels. Indeed, the pharmacological inhibition of α‐secretase activity reduced the axonal sprouting of ipsilateral retinocollicular projections from the intact eye after ME, suggesting that sAPPα is necessary for synaptic structural rearrangement. Understanding how APP processing is regulated under lesion conditions may provide new insights into APP physiological role on neural plasticity.
Hypothyroidism induced by perinatal administration of propylthiouracil (PTU) had profound effects on growth of the heart, with major organ weight deficits persisting well beyond the termination of drug treatment. These effects were preceded by disruption of the developmental patterns of cardiac ornithine decarboxylase (ODC) and the polyamines, which are thought to be intracellular modulators of cellular maturation. Activity of cardiac ODC was depressed in the PTU‐treated group and putrescine and spermidine levels were markedly subnormal. PTU administration also affected brain growth, but much less so than in the heart. The disruption of the brain ODC/polyamine system was also less pronounced, with relatively small degrees of spermidine depletion and a slight elevation of ODC. For both tissues, the biochemical effects of perinatal hypothyroidism were opposite to those found previously for administration of exogenous thyroid hormones. These results support the views that: (1) endogenous thyroid hormones contribute to the maintenance of normal developmental patterns of ODC and the polyamines, and (2) the ODC/polyamine system participates in events modulating subsequent tissue growth.
In our previous report, we showed that Presenilin (PS)1 and 2 have differential expression profile from early embryonic stages till adulthood in mouse cerebral cortex, suggesting that both of these proteins are crucial for brain development. Genetic manipulation studies have also shown the involvement of PS1 in brain development, but PS2 remains largely unexplored. In order to understand how PS1 and 2 mediate developmental functions, we have investigated the interaction of PS1 and 2 with proteins of mouse cerebral cortex during development. Co‐immunoprecipitation (Co‐IP) combined with MALDI‐MS/MS analysis revealed 12 interacting partners of PS1 and 11 partners of PS2. The interacting proteins were different for PS1 and 2, and involved in cell division, glycolysis, cell adhesion and protein trafficking. Densitometric analysis of protein bands visualized after SDS‐PAGE separation of Co‐IP proteins revealed variation in their amount and degree of interaction during different developmental stages of mice. Further, immunoblot based validation of PS1 interacting protein Notch‐1 showed maximum interaction at embryonic day (E) 12.5, decline at E18.5, upregulation from postnatal day 0 (P0) to P20 and thereafter reduction at P45 and 20 weeks.
Glutamate plays an important role in brain development, physiological function, and neurodegeneration. Astrocytes control synaptic concentration of glutamate via the high affinity glutamate transporters, GLT‐1 and GLAST, and the glutamate catabolizing enzyme, glutamine synthetase. In this study we show that astrocytes cultured from rat brain in various stages of development including embryonic (E18), postnatal (P1–P21) and mature (P50), show distinct patterns of GLT‐1 and GLAST expression, glutamine synthetase activity, and phenotypic changes induced by dibutyryl‐cyclic adenosine monophosphate. The transcripts for GLT‐1 message were detectable in embryonic astrocytes only, whereas the GLAST message was highly expressed in E18 and P1–P4 astrocyte cultures, declined in P10–P21, and was undetectable in P50 astrocytes. Uptake of3H‐glutamate correlated well with GLAST expression in astrocyte cultures of all developmental stages. Glutamine synthetase activity significantly declined from high embryonic levels in P4 astrocytes and remained low throughout postnatal maturation. Exposure of astrocyte cultures to the differentiating agent, db‐cAMP (250–500 μM; 6 days), resulted in a pronounced stellation, up‐regulation of GLT‐1 and GLAST in E18, and GLAST in P4 cultures, while it was ineffective in P10 astrocytes. By contrast, db‐cAMP induced a more pronounced stimulation of glutamine synthetase activity (up to 10‐fold above basal) in P10 than in E18 cultures (up to 2 times above basal). The differences in expression/inducibility of glutamate transporters and glutamine synthetase observed in astrocyte cultures derived from various stages of fetal and postnatal development suggest that astrocytes in vivo might also respond differently to environmental or injurious stimuli during development and maturation.
Cultures of astroglia from C3H/HeJ mice, which are resistant to bacterial cell wall polysaccharide (LPS), initiated from embryos of Theiler stage 14 (9 days of gestation) up to Theiler stage 25 (17 days of gestation) as well as newborn animals, when subjected to nutritional deprivation, i.e. non‐feeding of cultures, form large numbers of macrophage‐like cells. These cells express Mac‐1, Mac‐3, F4/80 and Fc antigens. The cells are negative for GFAP, positive for vimentin, express Ia antigen and take up DiL‐Ac‐LDL. They are positive to non‐specific esterase, secrete lysozyme and are phagocytic. Their morphology and ultrastructure closely resemble those of macrophages. Cultures initiated from neuroepithelium of Theiler stage 13 (8.5 days of gestation), before vascularization, when subjected to nutritional deprivation, also produce macrophage‐like cells. Using spleen colony assay and methyl cellulose cultures, we were unable to detect the presence of hemopoietic (macrophage) precursor cells in astroglia cultures. This supports the hypothesis that the macrophage‐like cells are of neuroectodermal origin and probably correspond to resident microglia of the CNS. Using nutritionally deprived astroglia cultures, a procedure was developed for isolation of macrophage‐like cells and production of highly enriched macrophage‐like (microglia) cultures.
We have investigated the effect of PS‐D induced in gestating rats by treatment with clomipramine or with the platform technique on the process of DNA synthesis taking place in fetal organs. This parameter was taken as a biochemical index of ongoing cellular proliferation. In brain and, to a minor extent, in liver and kidney the rate of fetal DNA synthesis was markedly increased in both experimental groups. The effect was more prominent in the clomipramine group. PS‐D treatment of gestating rats, notably by the platform technique, left long‐lasting effects in the offspring with regard to organ weight and DNA concentration as well as to learning capacity. It is concluded that the occurrence of PS in gestating rats may exert a significant influence on fetal development.
The Wnt and Notch signalling pathways control proliferation, specification, and cell fate choices during embryonic development and in adult life. Hence, there is much interest in both signalling pathways in the context of stem cell biology and tissue regeneration. In the developing ear, the Wnt and Notch signalling pathways specify otic cells and refine the ventral boundary of the otic placode. Since both signalling pathways control events essential for the formation of sensory cells, such as proliferation and hair cell differentiation, these pathways could hold promise for the regeneration of hair cells in adult mammalian cochlea. Indeed, modulating either the Wnt or Notch pathways can trigger the regenerative potential of supporting cells. In the neonatal mouse cochlea, Notch‐mediated regeneration of hair cells partially depends on Wnt signalling, which implies an interaction between the pathways. This review presents how the Wnt and Notch signalling pathways regulate the formation of sensory hair cells and how modulating their activity induces regenerative potential in the mammalian cochlea.
- 1
- 2
- 3
- 4
- 5
- 6
- 10