Hanging drop culture enhances differentiation of human adipose‐derived stem cells into anterior neuroectodermal cells using small molecules

Noushin Amirpour1, Shahnaz Razavi1, Ebrahim Esfandiari1, Batoul Hashemibeni1, Mohammad Kazemi2, Hossein Salehi1
1Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Tóm tắt

AbstractInspired by in vivo developmental process, several studies were conducted to design a protocol for differentiating of mesenchymal stem cells into neural cells in vitro. Human adipose‐derived stem cells (hADSCs) as mesenchymal stem cells are a promising source for this purpose. At current study, we applied a defined neural induction medium by using small molecules for direct differentiation of hADSCs into anterior neuroectodermal cells. Anterior neuroectodermal differentiation of hADSCs was performed by hanging drop and monolayer protocols. At these methods, three small molecules were used to suppress the BMP, Nodal, and Wnt signaling pathways in order to obtain anterior neuroectodermal (eye field) cells from hADSCs. After two and three weeks of induction, the differentiated cells with neural morphology expressed anterior neuroectodermal markers such as OTX2, SIX3, β‐TUB III and PAX6. The protein expression of such markers was confirmed by real time, RT‐PCR and immunocytochemistry methods According to our data, it seems that the hanging drop method is a proper approach for neuroectodermal induction of hADSCs. Considering wide availability and immunosuppressive properties of hADSCs, these cells may open a way for autologous cell therapy of neurodegenerative disorders.

Tài liệu tham khảo

10.1089/scd.2011.0073 10.2217/rme.14.11 10.1097/01.PRS.0000055043.62589.05 10.1002/term.518 10.1007/s12031-011-9503-9 10.1038/nbt.1529 10.1001/archopht.125.2.151 10.2174/157488810791268645 10.1006/bbrc.2001.6270 10.1371/journal.pone.0072474 10.1242/dev.127.11.2333 10.1038/cddis.2009.22 10.1016/j.diff.2008.10.016 10.1038/mt.2009.67 10.1634/stemcells.2007-0523 10.1002/jcp.20463 Havlas V., 2011, Comparison of chondrogenic differentiation of adipose tissue‐derived mesenchymal stem cells with cultured chondrocytes and bone marrow mesenchymal stem cells, Acta Chir. Orthop. Traumatol. Cech., 78, 138, 10.55095/achot2011/022 10.1016/j.febslet.2004.06.085 10.1016/j.ydbio.2004.09.034 10.1073/pnas.0500010102 10.1242/jcs.03281 10.1089/107632704322791853 10.1523/JNEUROSCI.23-21-07742.2003 10.1073/pnas.1007753108 Kim H.J., 2012, In vitro chondrogenic differentiation of human adipose‐derived stem cells with silk scaffolds, J. Tissue Eng., 3 10.1006/dbio.2000.9835 10.1097/01.prs.0000182570.62814.e3 10.1007/s00418-010-0740-8 10.1016/j.bone.2006.09.006 10.1016/j.ydbio.2014.01.011 10.1101/gad.1059403 10.1073/pnas.0601990103 10.1002/stem.768 10.1098/rsob.120167 10.1359/jbmr.071011 10.1016/j.jbiosc.2010.09.001 Moviglia G.A., 2012, In vitro differentiation of adult adipose mesenchymal stem cells into retinal progenitor cells, Ophthalmic Res., 48, 1, 10.1159/000339839 10.1038/nrn786 10.1002/jez.1401200103 10.1038/nbt1384 10.1242/jcs.050393 10.1038/nrn2007 10.1016/j.bbrc.2004.01.053 10.1016/S0006-291X(02)00469-2 10.1007/s12015-015-9631-7 10.1242/dev.000166 10.1038/nprot.2012.116 10.1016/j.ydbio.2007.10.003 10.1387/ijdb.052095cs 10.1016/j.bbrc.2013.06.058 10.1002/stem.1166 10.1016/j.ydbio.2009.04.008 10.1002/hep.23506 Viczian A.S., 2013, Advances in retinal stem cell biology, J. Ophthalmic Vis. Res., 8, 147 10.1016/j.ydbio.2005.02.027 10.1002/jnr.10365 10.1139/cjpp-2013-0377 10.1007/978-1-61737-960-4_16 Zavan B., 2010, Neural potential of adipose stem cells, Discov. Med., 10, 37 10.1016/S0006-291X(02)02126-5 10.1242/dev.00723 10.1089/107632701300062859 10.1091/mbc.e02-02-0105 10.1002/term.12