Chemistry - An Asian Journal
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
An efficient method for C7‐position‐selective alkenylation of
Hai vật liệu vận chuyển điện tích thienothiophene–triphenylamine dễ tiếp cận đã được tổng hợp chỉ bằng cách thay đổi mẫu thế của các nhóm triphenylamine trên một liên kết π thienothiophene trung tâm. Ảnh hưởng của mẫu thế đến các tính chất nhiệt, quang điện hóa và quang điện của các vật liệu này đã được đánh giá và, dựa trên các nghiên cứu lý thuyết và thực nghiệm, chúng tôi đã phát hiện ra rằng đồng phân trong đó các nhóm triphenylamine nằm ở vị trí 2,5 của lõi thienothiophene (
Highly positively charged poly(vinyl benzyl trimethylammonium chloride) (PVBMA) was successfully synthesized with approximately 82% of yield. The PVBMA was characterized by the molecular weight (
Quinoline derivatives are important moieties in bioactive molecules and advanced materials. However, an efficient strategy to synthesize quinoline derivatives remains challenging. Herein, we describe an efficient and practical method for the synthesis of quinolines by Cu‐catalyzed cyclization of 2‐amino benzyl alcohol with ketones (or secondary alcohols) via an acceptorless dehydrogenation pathway. Interestingly, a range of highly functionalized quinolines is prepared in good yields using low catalyst loading under relatively mild conditions. Furthermore, density functional theory (DFT) calculations are carried out to investigate mechanistic insights for the acceptorless dehydrogenation pathway.
A series of new push–pull phenothiazine‐based dyes (
Functional protein delivery has created new opportunities for studying intracellular processes and discovering new therapeutics. To that end, researchers have pursued intracellular protein delivery by using an increasing number of methods. This focus review will highlight polymeric carriers that non‐covalently bind and deliver protein cargo in vitro. The correlation between polymer–protein binding and delivery as well as the correlation between complex–membrane binding and delivery is reviewed. Finally, binding and its relation to the intracellular function of the protein post‐delivery is considered. The purpose of this review is to evaluate the role that binding interactions play in the non‐covalent protein‐delivery landscape. Presently, the literature does not adequately resolve how binding throughout the process ultimately affects delivery. The field does contain preliminary insights that are expected to impact future delivery applications when developed further.
Black phosphorus quantum dots (BPQDs), with an average diameter of about 6 nm and a height of about 1.1 nm, are successfully synthesized by means of a pulsed laser ablation (PLA) method in isopropyl ether (IPE) solvent. The photoluminescence PL quantum yield of the as‐prepared sample is as high as 20.7 %, which is 3 times that of BPQDs prepared by means of probe ultrasonic exfoliation (approximately 7.2 %). The stable and blue–violet PL emission of the BPQDs is observed. It can be elucidated that electrons transit from the LUMO energy level to the HOMO energy level, as well as energy levels below the HOMO (H1 and H2). In addition, BPQDs are also utilized in bioimaging in HeLa cells, showing an intense and stable PL signal and excellent biocompatibility. Hence, this work indicates that the obtained BPQDs with high quantum yield and stable PL emission have great potential for biomedical applications, including biolabeling, bioimaging, and drug delivery.
Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection‐related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra‐small nanoscale size and shape through different convenient bottom‐up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano‐formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Poly(3,4ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) has been intensively studied for its thermoelectric applications. Structural modulation to improve crystalline ordering, chain conformation and film morphology is a promising way to decouple the trade‐off between conductivity and Seebeck coefficient and thus improve the thermoelectric power factor. Post treatment with ionic liquid ([CoCl2 ⋅ 6H2O]:[ChCl]) bearing cobalt‐containing anions resulted in a remarkable enhancement of the power factor to 76.8 μW m−1 K−2. This IL combines the influence of a high‐boiling polar organic solvent and diffusing ions. A high σ mainly resulted from the efficient removal of PSS chains, ordering of the structure and delocalization of bipoloran‐dominant transport after conformational change. The increase in S was not due to dedoping of PEDOT chains, but rather the sharp feature of the density of states at the Fermi level induced by ion‐exchange with unconventional anions.
- 1
- 2
- 3
- 4
- 5
- 6