Biomass‐Derived Carbon Materials as Prospective Electrodes for High‐Energy Lithium‐ and Sodium‐Ion Capacitors

Chemistry - An Asian Journal - Tập 14 Số 7 - Trang 936-951 - 2019
Subramanian Natarajan1, Yun‐Sung Lee2, Vanchiappan Aravindan1
1Department of Chemistry, Indian Institute of Science Education and Research (IISEr), Tirupati 517507, India
2Faculty of Applied Chemical Engineering, Chonnam National University, Gwang-ju 500-757, Republic of Korea

Tóm tắt

AbstractBiomass‐derived carbon materials have received special attention as efficient, low‐cost, active materials for charge‐storage devices, regardless of the power system, such as supercapacitors and rechargeable batteries. In this Minireview, we discuss the influence of biomass‐derived carbonaceous materials as positive or negative electrodes (or both) in high‐energy hybrid lithium‐ion configurations with an organic electrolyte. In such hybrid configurations, the electrochemical activity is completely different to conventional electrical double‐layer capacitors; that is, one of the electrodes undergoes a Faradaic reaction, whilst the counter electrode undergoes a non‐Faradaic reaction, to achieve high energy density. The use of a variety of biomass precursors with different properties, such as surface functionality, the presence of inherent heteroatoms, tailored meso‐/microporosity, high specific surface area, various degrees of crystallization, calcination temperature, and atmosphere, are described in detail. Sodium‐ion capacitors are also discussed, because they are an important alternative to lithium‐ion capacitors, owing to the low abundance and high cost of lithium. The electrochemical performance of carbonaceous electrodes in supercapacitors and rechargeable batteries are not discussed.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201304137

10.1557/mrs.2015.272

10.1016/j.carbon.2015.11.060

10.1016/S0008-6223(00)00183-4

10.1039/b618139m

10.1002/9783527646661.ch4

10.1016/j.jpowsour.2015.12.029

10.1149/2.040209jes

10.1002/9783527646661.ch8

10.1002/9783527646661.ch6

10.1149/2.F07081IF

10.1021/jp7108785

10.1021/cr5000915

10.1021/acs.jpclett.8b01386

10.1021/acs.chemrev.8b00116

10.1039/c2ee21675b

10.1039/C7TA01594A

10.1039/C7TA04470D

10.1016/j.scriptamat.2018.10.016

10.1039/C6TA02478E

10.1021/ar200308h

10.1002/fuce.201000041

10.1007/s00339-005-3420-0

10.1016/j.jpowsour.2004.05.023

10.1149/1.1383553

10.1002/advs.201600539

10.1002/adma.201702093

10.1039/C7TA10881H

10.1016/j.cej.2015.08.014

10.1016/j.carbon.2017.11.065

10.1002/adma.201705670

10.1016/j.nanoen.2012.05.002

10.1039/C7NJ02580G

10.1039/C6TA08742F

10.1039/C7SE00099E

10.1039/C6GC01172A

Enock T. K., 2017, Int. J. Electrochem., 6453420

10.3390/c4040053

10.1039/C7TA05252A

10.1016/j.cej.2017.01.108

10.1039/C6EE01093H

10.1166/nnl.2014.1714

10.1351/PAC-CON-09-11-35

10.1016/j.electacta.2016.06.055

10.1016/j.carbon.2018.03.065

10.1039/C7TA09905C

10.1016/j.energy.2015.11.069

Kumar T. P., 2009, J. Indian Inst. Sci., 89, 393

10.1002/celc.201402371

10.1002/ppsc.201600044

10.1039/C7TA03862C

10.1016/j.jpowsour.2016.08.088

10.1016/j.supflu.2015.06.026

10.1016/j.micromeso.2015.06.041

10.1016/j.micromeso.2014.10.036

10.1016/j.jpowsour.2014.10.176

10.1016/j.cej.2015.03.111

10.1039/C3TA12648J

10.1038/srep03002

http://www.coconutboard.nic.in/charcoal.htm.

10.1149/1.2349495

10.1002/cssc.201400157

10.1016/j.carbon.2015.10.087

10.1002/cssc.201501621

10.1016/j.jpowsour.2018.12.089

10.1039/c3ee22325f

10.1016/j.apmt.2015.11.002

10.1002/smll.201401041

10.1016/j.electacta.2017.01.060

10.1002/slct.201700574

10.1016/j.jpowsour.2017.04.107

10.1002/adfm.201402398

10.1002/aenm.201402225

10.1039/C5EE03149D

10.1016/j.elecom.2013.04.010

10.1149/2.005308eel

10.1149/2.085310jes

10.1039/C7RA06680E

10.1038/srep40990

10.1039/b820555h

10.1021/nl500011d

10.1039/C7TA04154C

10.1039/C4EE02986K

10.1039/c2cp00017b

10.1039/C5TA05714K

10.1021/am300385r

10.1016/j.jpowsour.2013.05.132

10.1016/j.jelechem.2015.09.002

10.1016/j.jpowsour.2016.12.034

10.1002/aenm.201502199

10.1002/aenm.201600802

10.1002/aenm.201701336

10.1021/ja308676h

10.1039/C8TA05853A

10.1002/celc.201700484

10.1002/cssc.201600561

10.1016/j.ensm.2015.09.003

10.1039/c3ta12790g

10.1016/j.electacta.2015.09.127

10.1016/j.jpowsour.2009.09.016

10.1016/j.carbon.2009.02.034

10.1016/j.ensm.2017.12.012

10.1016/j.nanoen.2017.09.041

10.1002/chem.201504983

10.1149/2.F05081IF